Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic field modulation of photocurrent in BiFeO3 film

Huo Guan-Zhong Su Chao Wang Ke Ye Qing-Ying Zhuang Bin Chen Shui-Yuan Huang Zhi-Gao

Citation:

Magnetic field modulation of photocurrent in BiFeO3 film

Huo Guan-Zhong, Su Chao, Wang Ke, Ye Qing-Ying, Zhuang Bin, Chen Shui-Yuan, Huang Zhi-Gao
PDF
HTML
Get Citation
  • BiFeO3 (BFO) is a kind of room temperature multiferroic material with bulk photovoltaic effect, and it has been a research hotspot in the field of multifunctional materials in recent years. The coexistence of the coupling among magnetic, optical, electrical properties brings rich and complex physical connotations. In this work, BiFeO3 thin film is deposited on FTO substrate by pulsed laser deposition, and the solar cell structure with BiFeO3 film used as light absorption layer and Au film serving as electrode is constructed. X-ray diffraction and Raman spectra indicate that the BFO film grown on FTO substrate has a pure phase structure. The experimental results of physical properties indicate that the BFO film possesses good ferromagnetic and ferroelectric properties and obvious photoelectric effect. According to the hysteresis loop, the remanence (Mr) of the sample is 0.8 emu/cm3, and the coercivity (Hc) is 200 Oe at 300 K. In terms of ferroelectricity, the saturation polarization intensity of the sample can reach 0.997 μC/cm2, the residual polarization intensity is 0.337 μC/cm2, and the coercive electric field is 12.45 kV/cm. The above results show that the BFO film has good multiferroic properties. Under solar illumination conditions, the photocurrent density up to 208 mA/cm2 is obtained when a bias voltage 1 V is applied. More importantly, magneto-photocurrent (MPC) effect is found in the BFO film. No matter whether the magnetic field starts to increase from the positive direction or the negative direction, the MPC usually changes with the magnitude of magnetization. When a 1.3 kOe magnetic field is applied, the magneto-photocurrent change rate up to 232.7% is observed under standard solar illumination condition. The results show that the photocurrent of BFO films is greatly improved by a positive magnetic field and negative magnetic field. This magneto-photocurrent effect in BFO thin film comes from the photo-magnetoresistance effect, that is, the photogenerated electrons become spin photoelectrons under the action of an external magnetic field and receive spin-dependent scattering during moving in the conductive band of the material, thus producing the photo-magnetoresistance effect. In addition, the magneto-photocurrent effect is further enhanced by weakening the domain wall scattering of the spin electrons by the magnetic field. This work provides a reference for the modulation effect of magnetic field and light field on the magnetic, optical and electrical properties in multiferroics, and presents a foundation for the research and application of devices in the field of multifunctional optoelectronic materials.
      Corresponding author: Chen Shui-Yuan, sychen@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074031), the National Key R&D Program of China (Grant No. 2017YFE0301401), and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2020J01192, 2021J01191).
    [1]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [2]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [3]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [4]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar

    [10]

    Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar

    [11]

    Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar

    [12]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [13]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar

    [14]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [15]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [16]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [17]

    Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar

    [18]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [19]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [20]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [21]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [22]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [23]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar

    [24]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [25]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [26]

    Andy E 2019 Nature 570 429Google Scholar

    [27]

    Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar

    [28]

    Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar

    [29]

    Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar

    [30]

    Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar

    [31]

    Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar

    [32]

    Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar

    [33]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [34]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [35]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [36]

    Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar

    [37]

    Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar

    [38]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [39]

    Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar

    [40]

    Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar

    [41]

    Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar

    [42]

    Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [43]

    Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar

    [44]

    Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar

    [45]

    Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar

    [46]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [47]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [48]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [49]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [50]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [51]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [52]

    Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar

    [53]

    Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar

    [54]

    Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar

    [55]

    Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar

    [56]

    Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar

    [57]

    Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar

    [58]

    翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页

    Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)

  • 图 1  BFO薄膜在300 K温度下的(a) XRD图谱和(b)拉曼光谱

    Figure 1.  The XRD pattern (a) and Raman spectrum (b) of the BFO thin film at 300 K.

    图 2  BFO薄膜在300 K温度下的(a)磁滞回线图和(b)电滞回线图

    Figure 2.  The M-H hysteresis loop (a) and the P-E hysteresis loops (b) of the BFO film at 300 K.

    图 3  室温下样品J-V曲线在无磁场黑暗条件下及光照下随外磁场增强的响应情况

    Figure 3.  The J-V curves of the sample at room temperature under dark conditions without magnetic field and under light with the increase of external magnetic field.

    图 4  在偏压分别为(a), (c) 0 V和(b), (d) 1 V时, 室温下样品的(a), (b)光电流随磁场变化曲线以及(c), (d) $ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $值随磁场变化的响应曲线

    Figure 4.  Change curves of photocurrent (a), (b) and $ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $(c), (d) with the alteration of magnetic field for the sample at room temperature with the bias of (a), (c) 0 V and (b), (d) 1 V.

    图 5  (a) Fe3+简并轨道能量、自旋光电子与电子能带态密度示意图; (b)外磁场作用下Fe3+能带移动示意图

    Figure 5.  (a) Schematic diagram of the Fe3+ degenerate orbital energy, spin photoelectron and electron band density of state; (b) schematic diagram of the Fe3+ band movement under the external magnetic field.

  • [1]

    Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [2]

    Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar

    [3]

    Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar

    [4]

    张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar

    Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar

    [5]

    Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar

    [6]

    Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar

    [7]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [8]

    Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar

    [9]

    Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar

    [10]

    Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar

    [11]

    Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar

    [12]

    Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar

    [13]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar

    [14]

    Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [15]

    Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar

    [16]

    Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar

    [17]

    Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar

    [18]

    Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar

    [19]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar

    [20]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [21]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [22]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [23]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar

    [24]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [25]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [26]

    Andy E 2019 Nature 570 429Google Scholar

    [27]

    Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar

    [28]

    Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar

    [29]

    Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar

    [30]

    Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar

    [31]

    Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar

    [32]

    Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar

    [33]

    Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar

    [34]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [35]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [36]

    Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar

    [37]

    Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar

    [38]

    Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar

    [39]

    Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar

    [40]

    Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar

    [41]

    Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar

    [42]

    Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [43]

    Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar

    [44]

    Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar

    [45]

    Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar

    [46]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [47]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [48]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [49]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [50]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [51]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [52]

    Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar

    [53]

    Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar

    [54]

    Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar

    [55]

    Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar

    [56]

    Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar

    [57]

    Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar

    [58]

    翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页

    Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)

  • [1] Zhao Xin-Li, Ma Guo-Liang, Ma Yu-Gang. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy. Acta Physica Sinica, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [2] Liu Chuan-Chuan, Hao Fei-Xiang, Yin Yue-Wei, Li Xiao-Guang. Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterojunction. Acta Physica Sinica, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [3] Zhang Ya-Ju, Xie Zhong-Shuai, Zheng Hai-Wu, Yuan Guo-Liang. Optimization of electrical and photovoltaic properties of Au-BiFeO3 nanocomposite films. Acta Physica Sinica, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [4] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [5] Cai Tian-Yi, Ju Sheng. Photovoltaic effect in ferroelectrics. Acta Physica Sinica, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [6] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [7] Tang Tian-Tian, Zhang Chao-Min, Zhang Min. Photodetached electron flux of H- in magnetic field near a metal surface. Acta Physica Sinica, 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [8] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [9] Tang Tian-Tian, Wang De-Hua, Huang Kai-Yun, Wang Shan-Shan. Photo-detachment of hydrogen negative ion in a magnetic field near a dielectric surface. Acta Physica Sinica, 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [10] Wu Li-Hua, Zhang Xiao-Zhong, Yu Yi, Wan Cai-Hua, Tan Xin-Yu. Photovoltaic effect of a-C: Fe/AlOx /Si based heterostructures. Acta Physica Sinica, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [11] Cai Li-Bing, Wang Jian-Guo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface. Acta Physica Sinica, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [12] Zhang Wen. Micro-gravity effect in a magnetic field. Acta Physica Sinica, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [13] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Chen Ke-Qiu. The localized electronic states and transmission spectra in N-layer superlattice with structural defects in finite magnetic fields. Acta Physica Sinica, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [14] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [15] Han Yi, Ban Chun-Yan, Ba Qi-Xian, Wang Shu-Han, Cui Jian-Zhong. Effect of magnetic field on the interfacial microstructure between molten aluminium and solid iron. Acta Physica Sinica, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [16] Huang Wei-Qing, Chen Ke-Qiu, Shuai Zhi-Gang, Wang Ling-Ling, Hu Wang-Yu. Magneto-coupling effect on surface electron states in a semi-infinite superlattice. Acta Physica Sinica, 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
    [17] HOU CHUN-FENG, LI SHI-QUN, LI BIN, SUN XIU-DONG. INCOHERENTLY COUPLED BRIGHT-DARK SCREENING-PHOTOVOLTAIC SOLITON PAIRS IN BIASED PHOTOVOLTAIC PHOTOREFRACTIVE CRYSTALS. Acta Physica Sinica, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [18] CHEN ZHENG-LIN, ZHANG JIE. CONFIGURATION OF MAGNETIC FIELDS INDUCED BY SUPERTHERMAL ELECTRONS. Acta Physica Sinica, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [19] GUO YONG, GU BING-LIN, YOSHIYUKI KAWAZOE. TUNNELING TRANSPORT OF TWO-DIMENSIONAL SPIN-ELECTRONS THROUGH MAGNETIC QUANTUM S TRUCTURES. Acta Physica Sinica, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [20] CHEN ZHENG-LIN, ZHANG JIE. CONFIGURATION OF MAGNETIC FIELDS INDUCED BY SUPERTHERMAL ELECTRONS. Acta Physica Sinica, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
Metrics
  • Abstract views:  3813
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2022
  • Accepted Date:  09 January 2023
  • Available Online:  06 March 2023
  • Published Online:  20 March 2023

/

返回文章
返回