-
Inhomogeneous magnetic field is introduced into pulsed laser deposition process, in order to find new properties of diamond-like carbon film grown under magnetic field, thereby offering the theoretical and experimental basis for further enhancing sp3-bond content in this film. Distribution of the magnetic strength and flux lines induced by a rectangular permanent magnet is calculated. And then, flying trace of the carbon ions in the magnetic field is also simulated by the iterative method, which indicates that the carbon ions cannot expand freely and they are confined and accumulate around the center region of the magnet source. Beside the surface interference, the measurement and the fitted results of ellipsometry parameters show that magnetic field exerts an important influence on layer-thickness distribution and optical constant of the pulsed laser deposition-grown diamond-like carbon film. Meanwhile, it is indicated that the inhomogeneity of the layer-thickness distribution and optical constant increase when the magnetic strength is higher. Micro-structure of diamond-like carbon film is affected seriously by magnetic field, which is indicated by Raman spectra. Magnetic field can enhance the local stress in the carbon matrix net, increasing the sp3-bond content. Theoretical research and experimental research both show that a suitable magnetic strength can excite micro-structure of diamond-like carbon film significantly, and the high-quality diamond-like carbon coating with practical application value will be obtained by technological adjustment.
-
Keywords:
- diamond-like carbon film /
- pulsed laser deposition /
- magnetic field-restrained plasma /
- micro-structure
[1] 邓钟炀, 贾强, 冯斌, 刘磊 2021 中国激光 48 0802010Google Scholar
Deng Z Y, Jia Q, Feng B, Liu L 2021 Chin. J. Lasers 48 0802010Google Scholar
[2] Lu Y M, Yang C L, Wang H, Ma L F, Xu M M, Xi L 2023 Vacuum 211 111912Google Scholar
[3] Hiroharu K, Kazuya D, Satoshi H, Yoshiaki S 2000 Thin Solid Films 374 278Google Scholar
[4] Fernandez C J, Vassent J L, Givord D 1999 Appl. Surf. Sci. 138–139 150Google Scholar
[5] Zhang K J, Dai J M, Zhu X B, Zhu S J, Yin L H, Tang X W, Sun Y P 2020 Appl. Phys. Lett. 116 053103Google Scholar
[6] 戴建明, 张科军, 邹建, 刘亲壮, 盛志高, 朱雪斌, 吴文彬, 孙玉平 2014 中国专利 201410033519. X
Dai J M, Zhang K J, Zou J, Liu Q Z, Sheng Z G, Zhu X B, Wu W B, Sun Y P 2014 China Patent 201410033519. X
[7] Wakiya N, Kawaguchi T, Sakamoto N, Das H, Shinozaki K, Suzuki H 2017 J. Ceram. Soc. Jpn. 125 856Google Scholar
[8] Ayano I, Takahiko K, Naonori S, Hisao S, Naoki W 2023 J. Ceram. Soc. Jpn. 131 275Google Scholar
[9] 胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 物理学报 72 130501Google Scholar
Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar
[10] Sukhmander S, Hitendra K M 2023 J. Astrophys. Astr. 44 3Google Scholar
[11] Zhang Y W, Zhao H L 2023 Adv. Space Res. 71 3281Google Scholar
[12] Ali M, Parviz K, Mehdi R, Hadi S, Rouholah A 2015 Carbon 94 485Google Scholar
[13] Modabberasl A, Sharifi M, Shahbazi F, Kameli P, Ranjbar M 2022 Diam. Relat. Mater. 128 109261Google Scholar
[14] 程勇, 陆益敏, 黄国俊, 米朝伟, 黎伟, 田方涛, 王赛 2019 红外与激光工程 48 1117002Google Scholar
Cheng Y, Lu Y M, Huang G J, Mi C W, Li W, Tian F T, Wang S 2019 Infrared Laser Eng. 48 1117002Google Scholar
[15] Ismail R A, Suaad S S, Ali M M 2021 Opt. Laser Technol. 140 107042Google Scholar
[16] Nikov R G, Dikovska A O, Avdeev G V, Amoruso S, Ausanio G, Nedyalkov N N 2019 Appl. Surf. Sci. 471 368Google Scholar
[17] Gao D W, Wang L, Su X Q, Jin Wang, Chen R X 2021 Opt. Mat. 114 110877Google Scholar
[18] Debnath N, Kawaguchi T, Das H, Suzuki S, Kumasaka W, Sakamoto N, Shinozaki K 2018 Sci. Technol. Adv. Mat. 19 507Google Scholar
[19] Zhang K J, Dai J M, Wu X B, Zhu X G, Zuo X Z, Zhang P, Hu L, Lu W J, Song W H 2016 Sci. Rep. 6 1Google Scholar
[20] Behera N, Kumar A, Singh R K 2021 Plas. Res. Exp. 3 025011Google Scholar
[21] 王桂才 2021 博士学位论文(兰州: 中国科学院大学)
Wang G C 2021 Ph. D. Dissertation (Lanzhou: University of Chinese Academy of Sciences
[22] 李慧敏, 龚瑞昆, 周国庆 2021 现代电子技术 44 150Google Scholar
Li H M, Gong R K, Zhou G Q 2021 Modern Electron. Techn. 44 150Google Scholar
[23] 孟燕 2020 硕士学位论文(包头: 包头师范学院)
Meng Y 2020 M. S. Thesis (Baotou: Baotou Teachers’ College
[24] Lu Y M, Wang H, Mi C W, Yang C L, Huang G J, Xu M M 2023 Infrared Phys. Techn. 131 104708Google Scholar
[25] 唐雨, 束永平, 郭振杭 2022 东华大学学报(自然科学版) 48 126Google Scholar
Tang Y, Shu Y P, Guo Z H 2022 J. Donghua Univ. (Natural Science) 48 126Google Scholar
[26] 崔长彩, 李慧慧, 陈希, 周志豪, 胡中伟 2023 仪器仪表学报 44 37Google Scholar
Cui C C, Li H H, Chen X, Zhou Z H, Hu Z W 2023 Chin. J. Sci. Instrum. 44 37Google Scholar
[27] Bobzin K, Kalscheuer C, Thiex M, Sperka P, Hartl M, Reitschuster S, Maier E, Lohner T, Stahl K 2023 Tribol. Lett. 71 2Google Scholar
[28] 薛群基, 王立军 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第6页
Xue Q J, Wang L J 2012 Carbon-based Diamond-like Thin Film Materials (Beijing: Science Press) p6
[29] Seong S Y, Chen H N, Seong L Y, Teck Y T 2015 J. Nanomater. 2015 731306Google Scholar
[30] Jang S, Kim S H 2023 Carbon 202 61Google Scholar
-
图 2 磁场B1仿真 (a) y = 0平面上的磁感应强度及磁力线分布; (b) y = 0平面上的磁感应强度1D分布; (c) 不同z距离上的磁感应强度2D分布
Figure 2. Simulation of the magnetic field B1: (a) Distribution of magnetic strength and flux lines in plane xoz; (b) 1D-distribution of magnetic strength in the plane y = 0; (c) 2D-distribution of magnetic strength at different distance in z axis.
表 1 DLC膜拉曼光谱特性的拟合参数
Table 1. Fitted Raman parameters of DLC layers.
样品 位置 /mm D峰位置 /cm–1 D峰半高宽度/cm–1 G峰位置/cm–1 G峰半高宽度/cm–1 ID/IG 比值 S1 0 1385.4 219.4 1570.8 138.6 0.366 6 1388.1 228.9 1570.3 133.1 0.381 12 1387.0 251.3 1580.3 127.2 0.459 18 1381.2 266.0 1588.0 123.5 0.868 S2 0 1391.7 201.3 1563.7 146.1 0.331 6 1386.1 253.1 1576.7 130.3 0.495 12 1382.6 287.4 1588.2 122.5 0.838 18 1387.8 308.0 1592.8 114.3 1.020 -
[1] 邓钟炀, 贾强, 冯斌, 刘磊 2021 中国激光 48 0802010Google Scholar
Deng Z Y, Jia Q, Feng B, Liu L 2021 Chin. J. Lasers 48 0802010Google Scholar
[2] Lu Y M, Yang C L, Wang H, Ma L F, Xu M M, Xi L 2023 Vacuum 211 111912Google Scholar
[3] Hiroharu K, Kazuya D, Satoshi H, Yoshiaki S 2000 Thin Solid Films 374 278Google Scholar
[4] Fernandez C J, Vassent J L, Givord D 1999 Appl. Surf. Sci. 138–139 150Google Scholar
[5] Zhang K J, Dai J M, Zhu X B, Zhu S J, Yin L H, Tang X W, Sun Y P 2020 Appl. Phys. Lett. 116 053103Google Scholar
[6] 戴建明, 张科军, 邹建, 刘亲壮, 盛志高, 朱雪斌, 吴文彬, 孙玉平 2014 中国专利 201410033519. X
Dai J M, Zhang K J, Zou J, Liu Q Z, Sheng Z G, Zhu X B, Wu W B, Sun Y P 2014 China Patent 201410033519. X
[7] Wakiya N, Kawaguchi T, Sakamoto N, Das H, Shinozaki K, Suzuki H 2017 J. Ceram. Soc. Jpn. 125 856Google Scholar
[8] Ayano I, Takahiko K, Naonori S, Hisao S, Naoki W 2023 J. Ceram. Soc. Jpn. 131 275Google Scholar
[9] 胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 物理学报 72 130501Google Scholar
Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar
[10] Sukhmander S, Hitendra K M 2023 J. Astrophys. Astr. 44 3Google Scholar
[11] Zhang Y W, Zhao H L 2023 Adv. Space Res. 71 3281Google Scholar
[12] Ali M, Parviz K, Mehdi R, Hadi S, Rouholah A 2015 Carbon 94 485Google Scholar
[13] Modabberasl A, Sharifi M, Shahbazi F, Kameli P, Ranjbar M 2022 Diam. Relat. Mater. 128 109261Google Scholar
[14] 程勇, 陆益敏, 黄国俊, 米朝伟, 黎伟, 田方涛, 王赛 2019 红外与激光工程 48 1117002Google Scholar
Cheng Y, Lu Y M, Huang G J, Mi C W, Li W, Tian F T, Wang S 2019 Infrared Laser Eng. 48 1117002Google Scholar
[15] Ismail R A, Suaad S S, Ali M M 2021 Opt. Laser Technol. 140 107042Google Scholar
[16] Nikov R G, Dikovska A O, Avdeev G V, Amoruso S, Ausanio G, Nedyalkov N N 2019 Appl. Surf. Sci. 471 368Google Scholar
[17] Gao D W, Wang L, Su X Q, Jin Wang, Chen R X 2021 Opt. Mat. 114 110877Google Scholar
[18] Debnath N, Kawaguchi T, Das H, Suzuki S, Kumasaka W, Sakamoto N, Shinozaki K 2018 Sci. Technol. Adv. Mat. 19 507Google Scholar
[19] Zhang K J, Dai J M, Wu X B, Zhu X G, Zuo X Z, Zhang P, Hu L, Lu W J, Song W H 2016 Sci. Rep. 6 1Google Scholar
[20] Behera N, Kumar A, Singh R K 2021 Plas. Res. Exp. 3 025011Google Scholar
[21] 王桂才 2021 博士学位论文(兰州: 中国科学院大学)
Wang G C 2021 Ph. D. Dissertation (Lanzhou: University of Chinese Academy of Sciences
[22] 李慧敏, 龚瑞昆, 周国庆 2021 现代电子技术 44 150Google Scholar
Li H M, Gong R K, Zhou G Q 2021 Modern Electron. Techn. 44 150Google Scholar
[23] 孟燕 2020 硕士学位论文(包头: 包头师范学院)
Meng Y 2020 M. S. Thesis (Baotou: Baotou Teachers’ College
[24] Lu Y M, Wang H, Mi C W, Yang C L, Huang G J, Xu M M 2023 Infrared Phys. Techn. 131 104708Google Scholar
[25] 唐雨, 束永平, 郭振杭 2022 东华大学学报(自然科学版) 48 126Google Scholar
Tang Y, Shu Y P, Guo Z H 2022 J. Donghua Univ. (Natural Science) 48 126Google Scholar
[26] 崔长彩, 李慧慧, 陈希, 周志豪, 胡中伟 2023 仪器仪表学报 44 37Google Scholar
Cui C C, Li H H, Chen X, Zhou Z H, Hu Z W 2023 Chin. J. Sci. Instrum. 44 37Google Scholar
[27] Bobzin K, Kalscheuer C, Thiex M, Sperka P, Hartl M, Reitschuster S, Maier E, Lohner T, Stahl K 2023 Tribol. Lett. 71 2Google Scholar
[28] 薛群基, 王立军 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第6页
Xue Q J, Wang L J 2012 Carbon-based Diamond-like Thin Film Materials (Beijing: Science Press) p6
[29] Seong S Y, Chen H N, Seong L Y, Teck Y T 2015 J. Nanomater. 2015 731306Google Scholar
[30] Jang S, Kim S H 2023 Carbon 202 61Google Scholar
Catalog
Metrics
- Abstract views: 1845
- PDF Downloads: 48
- Cited By: 0