Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical transparent metasurface lenses and their wireless communication efficiency enhancement

Li Hao Pang Yong-Qiang Qu Bing-Yue Zheng Jiang-Shan Xu Zhuo

Citation:

Optical transparent metasurface lenses and their wireless communication efficiency enhancement

Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo
PDF
HTML
Get Citation
  • This paper presents the design of an optically transparent metasurface tailored for the 2.4 GHz Wi-Fi band. It is optically transparent and attaches to both sides of the glass to improve communication efficiency. The shape of focusing region is a rectangle with an area of 5 cm by 5 cm and a length of 10 cm. The metasurface attaches to both sides of the glass and realizes area focusing. To meet the requirements for area focusing, the metasurface possesses a double-layer structure of a Jerusalem cross and a circle, and the conductive thin film is a conductive and optically transparent copper mesh. The spatial distribution of field strength in a microwave unreflected chamber is scanned to verify the regional focusing effect of the metasurface. Compared with ordinary glass, the metalens achieves field enhancement of more than 7.3 dB in the designed aggregation region, with an average download speed increasing 20.2 Mb/s. Subsequently, the download speed and network speed stability in different scenarios are tested. The standard deviation is used to calculate the dispersion of the download speed. The results demonstrate that in the focusing area, comparing with ordinary glass, the average download speed of the signal across is increased by 13.8 Mb/s in the indoor environment, accompanied by a reduction in the standard deviation by 0.5. In the stairwell, the average download speed of the signal across of the metalens is observed to increase 12.1 Mb/s, accompanied by a reduction in the standard deviation by 1.4. In conclusion, the metasurface lens demonstrates the better ability to significantly reduce the standard deviation of download speed data in both indoor and stairwell test environments than in air and ordinary glass. This results in the effective smoothing out of the speed uctuations and the enhancing of signal transmission stability. Therefore, the ability of metalens to effectively reduce the amplitude of download speed fluctuations in various indoor environmental contexts confirms its key role in adapting to complex environments and improving the wireless communication performance. Moreover, the download speed of signals passing through the metalens is increased by more than 12 Mb/s in both test environmentsthan that of ordinary glass. This effectively improves not only the signal strength but also the communication efficiency. Concurrently, the designed optically transparent metasurface lens is straightforward in structure and user-friendly, and at the same time, it is moveable and can be positioned according to the needs of communication enhancement. The optically transparent metasurface lens scheme proposed in this study provides a potential solution to the high penetration loss problem currently encountered in indoor wireless communication.
      Corresponding author: Pang Yong-Qiang, pangyongqiang@xjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3806200) and the National Natural Science Foundation of China (Grant No. 61971341).
    [1]

    Yang G, Du J F, Xiao M 2015 IEEE Trans. Commun. 63 3511Google Scholar

    [2]

    Mumtaz S, Rodriguez J, Dai L 2016 Mmwave Massive Mimo: A Paradigm for 5g (London: Academic Press

    [3]

    Busari S A, Mumtaz S, Al-Rubaye S, Rodriguez J 2018 IEEE Commun. Mag. 56 137Google Scholar

    [4]

    Martinez-de-Rioja E, Vaquero A F, Arrebola M, Carrasco E, Encinar J A, Achour M 2021 Proceedings of the 15th European Conference on Antennas and Propagation (Eucap) Dusseldorf , Germany, Mar 22–26, 2021 p22

    [5]

    Meng X D, Liu R X, Chu H C, Peng R W, Wang M, Hao Y, Lai Y 2022 Phys. Rev. Appl. 17 064027Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F 2013 IEEE J. Sel. Topics Quantum Electron. 19 4700423Google Scholar

    [7]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [8]

    Luo X 2015 Sci. China-Phys. Mech. Astron. 58 594201Google Scholar

    [9]

    Yu N F, Genevet P, Kats M A 2011 Science 334 6054

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [11]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [12]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [13]

    Chen M K, Wu Y F, Feng L, Fan Q B, Lu M H, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [14]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [15]

    Zou X J, Zheng G G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2

    [16]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [17]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Li H Q 2013 Opt. Express 21 010739Google Scholar

    [18]

    Li H P, Wang G M, Liang J G, Gao X J, Hou H S, Jia X Y 2017 IEEE Trans. Antennas Propag. 65 11452

    [19]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255

    Li X, Ma X L, Luo X G 2017 Opto-Electron. Eng. 44 255

    [20]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 物理学报 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yun X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [21]

    Hong S, Kim Y, Oh J 2022 IEEE Trans. Antennas Propag. 70 6671Google Scholar

    [22]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [23]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [24]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

  • 图 1  聚焦超表面增强通信效率的原理示意图

    Figure 1.  Schematic of the focusing metasurface for enhancing communication efficiency.

    图 2  平面波穿过超表面后实现区域聚焦

    Figure 2.  Regional focusing of the plane waves after passing through the metasurface.

    图 3  超表面的相位排列单元分布图

    Figure 3.  Schematic of the phase distribution for the designed metasurface.

    图 4  超表面的两种基本单元, 耶路撒冷十字和圆环

    Figure 4.  Design of the Jerusalem cross and circle ring cells of the metasurface.

    图 5  单元结构的仿真透射系数 (a) 幅值; (b) 相位

    Figure 5.  Simulated transmission of the unit cells: (a) Amplitude; (b) phase.

    图 6  空白玻璃和超透镜的能流分布图 (a) 空白玻璃的正面能流分布; (b) 空白玻璃的侧面能流分布; (c) 超透镜的正面能流分布; (d) 超透镜的侧面能流分布

    Figure 6.  Simulated energy distributions of the pure glass and the metalens: (a) Energy distributions on the front of the pure glass; (b) energy distribution on the side of the pure glass; (c) energy distributions on the front of the metalens; (d) energy distributions on side of the metalens.

    图 7  Wi-Fi频段内超透镜和空白玻璃在不同焦距处强度

    Figure 7.  Comparison of the field intensity at the focusing areas between the pure glass and the metalens in the Wi-Fi working band.

    图 8  超透镜和空白玻璃实物图 (a) 超透镜; (b) 空白玻璃

    Figure 8.  Photograph of the fabricated metalens (a) and pure glass (b).

    图 9  透镜聚焦性能测试验证 (a) 空白玻璃的测试环境; (b) 超透镜的测试环境

    Figure 9.  Experimental demonstration for the focusing properties of the metalens in the microwave unreflected chamber: (a) Pure glass; (b) metalens.

    图 10  超透镜信号增强实验测试 (a) 空白玻璃在2.412 GHz不同焦距处强度; (b) 空白玻璃在2.484 GHz不同焦距处强度; (c) 超透镜在2.412 GHz不同焦距处强度; (d) 超透镜在2.484 GHz不同焦距处强度

    Figure 10.  Experimental test field-intensity enhancement of the metalens: Intensity at different focal lengths of 2.412 GHz (a) and 2.484 GHz (b) of the pure glass; intensity at different focal lengths of 2.412 GHz (c) and 2.484 GHz (d) of the metalens.

    图 11  超透镜在50 cm处不同频点的信号强度测试 (a) 空白玻璃在不同频点的信号强度; (b)超透镜在不同频点的信号强度

    Figure 11.  Experimental test field-intensity of the metalens at different frequency points at 50 cm: Intensity of different frequency points of the (a) pure glass and (b) the metalens.

    图 12  在微波暗室中基于超透镜的Wi-Fi通信实验演示

    Figure 12.  Experimental demonstration of wireless communication based on the metalens in microwave unreflected chamber.

    图 13  超透镜的信号增强实验演示 (a) 空气测试结果; (b) 玻璃测试结果; (c)超透镜测试结果

    Figure 13.  Experimental demonstration of signal enhancement by the metalens: (a) Speed-test result with the air; (b) speed-test result with the pure glass; (c) speed-test result with the metalens.

    图 14  楼梯内信号增强的实验演示 (a) 空气测试结果; (b) 玻璃测试结果; (c) 超透镜测试结果

    Figure 14.  Experimental demonstration of wireless communication based on the metalens inside the staircase: (a) Speed-test result with the air; (b) speed-test result with the pure glass; (c) speed-test result with the metalens.

    图 15  在不同环境中Wi-Fi信号的稳定性测试 (a) 楼梯间测试; (b) 室内测试

    Figure 15.  Stability testing of wireless signals in different environment: (a) Speed-test result of stairwell; (b) speed-test result of indoor

    表 1  信号穿过空白玻璃和超透镜对应的下载速度

    Table 1.  Comparing the download speeds of signals traversing the pure glass and the metalens.

    距离/cm 50 55 60 68
    穿过玻璃的下载速度/(Mb·s–1) 31.15 30.88 30.28 29.42
    穿过超透镜的下载速度/(Mb·s–1) 51.90 50.89 49.98 32.56
    DownLoad: CSV
  • [1]

    Yang G, Du J F, Xiao M 2015 IEEE Trans. Commun. 63 3511Google Scholar

    [2]

    Mumtaz S, Rodriguez J, Dai L 2016 Mmwave Massive Mimo: A Paradigm for 5g (London: Academic Press

    [3]

    Busari S A, Mumtaz S, Al-Rubaye S, Rodriguez J 2018 IEEE Commun. Mag. 56 137Google Scholar

    [4]

    Martinez-de-Rioja E, Vaquero A F, Arrebola M, Carrasco E, Encinar J A, Achour M 2021 Proceedings of the 15th European Conference on Antennas and Propagation (Eucap) Dusseldorf , Germany, Mar 22–26, 2021 p22

    [5]

    Meng X D, Liu R X, Chu H C, Peng R W, Wang M, Hao Y, Lai Y 2022 Phys. Rev. Appl. 17 064027Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F 2013 IEEE J. Sel. Topics Quantum Electron. 19 4700423Google Scholar

    [7]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [8]

    Luo X 2015 Sci. China-Phys. Mech. Astron. 58 594201Google Scholar

    [9]

    Yu N F, Genevet P, Kats M A 2011 Science 334 6054

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [11]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [12]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [13]

    Chen M K, Wu Y F, Feng L, Fan Q B, Lu M H, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [14]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [15]

    Zou X J, Zheng G G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2

    [16]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [17]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Li H Q 2013 Opt. Express 21 010739Google Scholar

    [18]

    Li H P, Wang G M, Liang J G, Gao X J, Hou H S, Jia X Y 2017 IEEE Trans. Antennas Propag. 65 11452

    [19]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255

    Li X, Ma X L, Luo X G 2017 Opto-Electron. Eng. 44 255

    [20]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 物理学报 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yun X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [21]

    Hong S, Kim Y, Oh J 2022 IEEE Trans. Antennas Propag. 70 6671Google Scholar

    [22]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [23]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [24]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Wang Cheng-Rong, Tang Li, Zhou Yan-Ping, Zhao Xiang, Liu Chang-Jun, Yan Li-Ping. Switchable and optically transparent ultrawide stopband frequency selective surface for electromagnetic shielding. Acta Physica Sinica, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [4] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Gong Tao, Yang Jian-Hua, Shan Zhen, Wang Zhi-Le, Liu Hou-Guang. Optimal resonance response of nonlinear system excited by nonlinear frequency modulation signal. Acta Physica Sinica, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [8] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [9] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] Study the optimal resonance response of nonlinear system excited by NLFM signal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211959
    [11] Li Jun-Yi, Ye Yu-Er, Ling Chen, Li Lin, Liu Yang, Xia Yong. Generation of focusing ring of metalens and its application in optical trapping of cold molecules. Acta Physica Sinica, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [12] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [14] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [15] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo. Research of a wide-angle backscattering enhancement metasurface. Acta Physica Sinica, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [17] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [18] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  338
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2024
  • Accepted Date:  27 April 2024
  • Available Online:  05 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回