Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of perovskite-based triple-junction tandem solar cells

Xu Chang Zheng De-Xu Dong Xin-Rui Wu Sa-Jian Wu Ming-Xing Wang Kai Liu Sheng-Zhong

Xu Chang, Zheng De-Xu, Dong Xin-Rui, Wu Sa-Jian, Wu Ming-Xing, Wang Kai, Liu Sheng-Zhong. Research progress of perovskite-based triple-junction tandem solar cells. Acta Phys. Sin., 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
Citation: Xu Chang, Zheng De-Xu, Dong Xin-Rui, Wu Sa-Jian, Wu Ming-Xing, Wang Kai, Liu Sheng-Zhong. Research progress of perovskite-based triple-junction tandem solar cells. Acta Phys. Sin., 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187

Research progress of perovskite-based triple-junction tandem solar cells

Xu Chang, Zheng De-Xu, Dong Xin-Rui, Wu Sa-Jian, Wu Ming-Xing, Wang Kai, Liu Sheng-Zhong
cstr: 32037.14.aps.73.20241187
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The energy conversion efficiency of single-junction solar cells is limited by the Shockley-Queisser theory and the most effective strategy to break through this limit is to fabricate multi-junction tandem solar cells. Perovskite materials provide a continuously tunable energy band structure, offering a new option for light-absorbing materials in multi-junction tandem cells. In the field of perovskite-based multi-junction tandem solar cells, triple-junction tandem solar cells have demonstrated great potential. The present paper introduces the configuration of triple-junction solar cells and its facing three scientific challenges. 1) Ensuring energy level alignment among sub-cells is a critical concern for three-junction batteries. Specifically, the top wide-band gap sub-cell must possess a band gap ranging from 1.8 to 2.2 eV; however, current perovskite material systems with wide-band gaps exhibit certain defects. 2) It is essential to achieve current matching in multi-junction tandem solar cells while optimizing the absorption layer and minimizing parasitic absorption in order to maximize the current output of solar cells. 3) The functional layers of multi-junction tandem solar cells are stacked sequentially using different deposition methods, which imposes higher compatibility requirements on the intermediate interconnect layers. Subsequently, the research progress of perovskite-based triple-junction tandem solar cells is introduced, including perovskite/perovskite/silicon tandem solar cells, perovskite/perovskite/organic tandem solar cells, and all-perovskite tandem solar cells. Their respective highest efficiencies are 19.4%, 23.87%, and 27.1%. Finally, this paper explores the research directions for further improving the performance of triple-junction solar cells. In addition to improving energy conversion efficiency, perovskite-based solar cells must also solve the stability problems in order to achieve future commercialization, and provide guidance for the development of efficient triple-junction cells.
      Corresponding author: Wang Kai, wangkai@dicp.ac.cn ; Liu Sheng-Zhong, szliu@dicp.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0138100) and the National Natural Science Foundation of China (Grant Nos. 22279140, U20A20252, 52350710208, U21A20102, 62174103).

    随着全球能源需求的日益增长和环境问题的日益严峻, 高效、环保的光伏发电技术成为研究热点. 近年来, 钙钛矿材料作为一种新型光电材料[1], 凭借其优异的光吸收性能和载流子传输特性受到光伏领域的广泛关注[2,3]. 另外, 钙钛矿材料还具有制备工艺简单、成本低廉等优势, 这些特点使得由钙钛矿材料构筑的光伏器件, 即钙钛矿太阳电池取得迅速发展. 目前, 钙钛矿太阳电池认证效率已经从3.8%显著提升至26.81%[4], 达到了硅太阳电池的效率水平, 展现出广阔的应用前景, 目前针对钙钛矿电池的产业化研究正如火如荼地进行.

    然而, 该效率已经接近钙钛矿单结电池的Shockley-Queisser (SQ)理论极限效率, 难以进一步大幅提升. 在光伏发电领域, 提升电池性能是降低太阳电池平准化度电成本的最有效策略, 因此, 为了进一步提升电池的光电性能, 研究人员开始将目光转移到叠层电池上. 叠层太阳电池的概念首次被Meier等[5]在1994年提出, 即将不同禁带宽度的吸光材料按从大到小的顺序进行叠合, 宽带隙电池吸收高能量光子, 窄带隙电池吸收低能量光子, 充分利用太阳光谱, 从而降低高能光子的热化损失, 提高太阳能利用率和电池效率[6]. 图1(a)以三结叠层太阳电池为例展示了叠层电池的光响应原理. 理论上, 单结电池的SQ极限效率为33.7%[7], 而双结和三结叠层电池的极限换效率分别为46%和51%[8,9]. 因此, 构建多结叠层电池可以获得更高的能量转换效率(PCE). 传统的多结叠层太阳电池通常采用III-V半导体材料制成, 然而高昂的材料成本和复杂的沉积技术大大地提高了电池的生产成本[10], 限制了其在地面光伏的应用[11]. 钙钛矿材料的禁带宽度可以在1.2—3.0 eV之间连续调节, 这为构建多结叠层太阳电池提供了新的选择[12]. 可以采用宽带隙的钙钛矿材料与窄带隙的钙钛矿、硅或窄带隙的有机光伏材料结合, 形成不同种类的多结叠层电池[13]. 值得指出的是, 鉴于硅电池技术已经趋于成熟[14], 能量转换效率难以进一步提升, 生产成本也已被压缩到极限, 将钙钛矿与硅结合构建叠层电池是进一步提升硅电池性能的重要策略, 也是加速钙钛矿光伏技术产业化的重要途径[15]. 近年来, 基于钙钛矿的双结叠层太阳电池的效率不断提升, 全钙钛矿双结叠层电池的认证能量转换效率为29.34%[4], 钙钛矿/有机太阳电池的认证能量转换效率为25.06%[16], 钙钛矿/硅叠层太阳电池的能量转换效率达到34.6%[4], 不仅高于相应单结电池的效率, 也已高于III-V基双结叠层太阳电池的效率. 以上进展证明了钙钛矿材料在多结叠层电池方面的巨大潜力.

    图 1 (a) 三结叠层太阳电池光响应原理; (b) 三结钙钛矿基叠层太阳电池效率演变; (c) 三结钙钛矿基叠层太阳电池结构示意图\r\nFig. 1. (a) Principle of light response of triple-junction tandem solar cells; (b) PCE evolution of triple-junction tandem solar cells; (c) schematic illustration of the triple-junction perovskite based tandem solar cells.
    图 1  (a) 三结叠层太阳电池光响应原理; (b) 三结钙钛矿基叠层太阳电池效率演变; (c) 三结钙钛矿基叠层太阳电池结构示意图
    Fig. 1.  (a) Principle of light response of triple-junction tandem solar cells; (b) PCE evolution of triple-junction tandem solar cells; (c) schematic illustration of the triple-junction perovskite based tandem solar cells.

    鉴于研究者在钙钛矿基双结叠层电池领域取得的大量进展, 且三结叠层电池具有更高的理论效率, 因而科研人员开始将目光转移到三结叠层电池领域. 在双结叠层电池的基础上, 基于钙钛矿的三结叠层太阳电池研究已取得一定进展, 为进一步提升钙钛矿基太阳电池的效率提供了可能. 考虑到钙钛矿基三结叠层太阳电池在提升电池性能方面的优势, 本文将综述这一领域的研究进展, 以期为相关领域的研究人员提供有价值的参考和启示. 首先, 本文介绍了目前报道的不同种类的钙钛矿基三结叠层太阳电池使用的器件结构并指出了电池面临的科技难题. 然后, 总结了不同种类钙钛矿基三结叠层太阳电池的发展现状. 最后, 对钙钛矿基三结叠层太阳电池的发展方向进行了展望.

    根据底部电池的类型, 多结叠层太阳电池的功能层沉积顺序不同. 如图1(c)所示, 在全钙钛矿叠层和钙钛矿/钙钛矿/有机叠层太阳电池中, 宽带隙钙钛矿薄膜最先沉积在导电玻璃衬底上, 之后沉积中间带隙钙钛矿电池, 最后沉积窄带隙的钙钛矿电池或有机电池. 而在钙钛矿/钙钛矿/硅叠层太阳电池中, 硅电池本身充当衬底, 在其表面依次沉积中间带隙钙钛矿层和宽带隙钙钛矿层. 在三结叠层电池中, 各子电池间通过中间互连层形成电学连接, 以最小的电阻损耗有效地抑制了电子和空穴的复合[17], 并在保证高光学透明性(低寄生光吸收[18]和低光反射[19])的条件下, 以降低光学损耗. 此外, 三结叠层电池要求中间互连层具有较强的溶剂阻隔能力, 确保二次制备钙钛矿时前一层钙钛矿薄膜不被溶解[20]. 在子电池结构上, 得益于在双结叠层电池领域取得的结果, 研究人员已经确认反式p-i-n结构的钙钛矿太阳电池具有较低的光学损耗[21], 更适合构建叠层电池, 即依次沉积空穴传输层, 钙钛矿层和电子传输层[22].

    虽然三结叠层太阳电池具有极大的理论潜力, 但在研究过程中需要考虑实际因素和局限性, 明确并解决相关问题, 以实现技术的快速发展.

    电流匹配是多结叠层太阳电池面临的重要问题之一[23]. 在多结叠层的太阳电池中, 整体输出电流受到产生最低电流的子电池限制[24]. 因此, 为了使太阳电池的电流输出最大化, 每个子电池产生的电流应该相同[25], 这可以通过优化子电池吸收层的禁带宽度来实现. 本文依据太阳光入射方向, 将三结叠层电池中的宽带隙子电池命名为顶电池, 中间带隙子电池命名为中间电池, 窄带隙电池命名为底电池. Hörantner等[6]通过光学和电学模拟评估了钙钛矿基三结叠层太阳电池的带隙组合和实际潜力. 在模拟中既考虑了寄生吸收、串联和分流电阻等由实验数据得出的光学和电学损失, 也考虑了子电池的非辐射重组等行为, 发现带隙的最佳组合受各层光电性质和损耗机制的影响, 应根据每种结构和层间材料的性质来确定. 如图2所示, 当采用硅电池作为窄带隙(约1.1 eV)底电池时, 宽带隙钙钛矿和中间带隙钙钛矿的理想禁带宽度分别为1.95 eV和1.44 eV, 最高效率可达到38.8%; 当采用钙钛矿作为窄带隙(约1.2 eV)底电池时, 对应的宽带隙钙钛矿和中间带隙钙钛矿的理想禁带宽度分别为2.04 eV和1.58 eV[6], 最高效率可达36.6%; 目前高效率有机电池的最小禁带宽度约为1.30 eV[26], 对应的宽带隙钙钛矿和中间带隙钙钛矿的理想禁带宽度分别为2.13 eV和1.66 eV. 中间层钙钛矿的禁带宽度与现阶段广泛研究的单结钙钛矿太阳电池的禁带宽度接近, 已经取得大量成果. 三结电池要求顶部宽带隙子电池的带隙在1.85—2.15 eV之间[27], 而研究人员对该范围内宽带隙钙钛矿材料研究较少.

    图 2 (a) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的EQE曲线[6]; (b) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的J-V曲线[6]; (c) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的EQE曲线[6]; (d) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的J-V曲线[6]\r\nFig. 2. (a) EQE curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (b) J-V curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (c) EQE curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6]; (d) J-V curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6].
    图 2  (a) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的EQE曲线[6]; (b) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的J-V曲线[6]; (c) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的EQE曲线[6]; (d) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的J-V曲线[6]
    Fig. 2.  (a) EQE curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (b) J-V curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (c) EQE curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6]; (d) J-V curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6].

    目前宽带隙钙钛矿材料体系主要包括准二维钙钛矿、碘溴混合的有机-无机复合钙钛矿和无机钙钛矿[2830]. 在全钙钛矿叠层电池和钙钛矿/钙钛矿/有机叠层电池中, 采用碘溴混合的有机-无机复合钙钛矿和无机钙钛矿构建顶电池; 而钙钛矿/钙钛矿/硅叠层电池中只能采用有机-无机复合的宽带隙钙钛矿构建顶电池. 这些宽带隙钙钛矿材料受限于较差的晶体质量[31,32], 存在较高的缺陷态密度[3335], 显著影响电池性能, 增加电池的能量损失. 例如, 二维钙钛矿具有高激子结合能和低载流子迁移率[36,37]. 全无机钙钛矿通常需要200 ℃以上的退火过程[38], 必须优先制备, 否则会造成底层和中间钙钛矿太阳电池的降解[39]. 最后, 有机-无机混合卤化钙钛矿需要高溴碘比以获得宽带隙[40], 但该类材料存在光致相分离问题, 即光照后形成富Br区和富I区[4143], 而富I区的禁带宽度较窄, 会俘获光生电子, 加快电荷复合, 导致太阳电池开路电压的损失较大, 是宽带隙钙钛矿面临的关键问题之一.

    为解决光致相分离问题, 文献中报道了几种策略. 1)组分工程: 在有机-无机混合卤化钙钛矿中Br和Cs的含量每增加10%, 带隙分别扩大0.06 eV和0.02 eV左右, 增加Cs含量可以在一定程度上降低Br含量, 同时保持相似的带隙, 提高光稳定性[44,45]. 在钙钛矿的A位阳离子中加入其他小尺寸阳离子, 如铷(Rb)[46,47]、钾(K)[48]等, 可以增加晶格畸变并阻止离子迁移, 是减缓相分离的另一种策略. 2)结晶工程: 相分离程度受钙钛矿的晶界、体相或表面存在的缺陷密度影响[49], 通过调整制备方法[50]、退火时间和退火温度等[51,52]可以改善钙钛矿的结晶度和增大晶粒尺寸以提高钙钛矿的光稳定性. 3)添加剂工程: Yu等[53]采用硫氰酸铅Pb(SCN)2作为添加剂获得了更大的晶粒尺寸. Kim等[54]通过在钙钛矿前驱体中加入Pb(SCN)2和苯乙基碘化铵(PEAI), 改善了宽带隙钙钛矿的形貌和结晶度. Thiesbrummel等[55]在宽带隙钙钛矿中加入了少量油胺, 改善了开路电压. 此外, 氯化甲胺(MACl)和苯乙基乙酸铵(PEAAc)也已成功应用于宽带隙钙钛矿中, 使卤化物分布更加均匀, 并减轻相分离[56,57]. 4)界面工程: 使用诸如PEAI和溴化丁基铵(BABr)等材料进行表面和界面钝化, 可在三维钙钛矿顶部形成二维钙钛矿层, 阻止离子迁移进而减轻相分离[58,59]. Belisle等[60]和Caprioglio等[61]也分别报道了4-氟苯乙基碘化铵(FPEAI)或盐酸苯乙双胍(PhenHCl)对晶界和表面的双重钝化作用. 用供电子配体三辛基氧化膦(TOPO)对钙钛矿进行表面改性, 也可以抑制相分离[62]. 因此, 通过优化钙钛矿组分, 调控晶体质量和钝化表界面缺陷均可以抑制宽带隙钙钛矿的相分离过程, 提升薄膜光稳定性.

    在多结太阳电池中, 子电池通过中间互连层串联在一起, 中间层造成折射率差异会导致较大的光学干扰, 从而出现不必要的反射. 因此, 减少反射损失以及最小化中间互连层的寄生吸收至关重要[6365]. 此外, 中间互连层除了满足低电阻损耗和高光学透明度等基本要求外, 横向电导率也应尽可能低, 以防止产生横向电流而促进电荷复合. 为满足上述要求, 高质量的中间层通常选用具有高透过率的透明导电氧化物(TCO)薄膜[66], 在首次报道的钙钛矿/钙钛矿/硅叠层太阳电池中, 采用150 nm 氧化铟锌(IZO)作为钙钛矿中间电池和顶部电池之间的互连层[67]. 然而, 该TCO层电阻较低, 导致横向电流较大, 促进了电池内部分流复合. 之后, Nejand等[68]采用15 nm的氧化铟锡(ITO)作为中间层后, 可以将更多的光传输到中间电池并减少分流, 其全钙钛矿双结太阳能电池短路电流密度增加了0.9 mA/cm2. Brinkmann等[57]使用1.5 nm的氧化铟(InOx)作为复合层制备了钙钛矿/有机双结叠层太阳电池. 值得注意的是, 较薄的TCO层可能无法有效地隔绝上下子电池之间的离子扩散, 进而影响稳定性. 另外, 在TCO层溅射之前须沉积一层缓冲层来降低离子轰击对底层薄膜的伤害, 通常是原子层沉积(ALD)的氧化锡(SnOx)层. 此外, Choi等[69]提出采用聚乙氧基化乙烯亚胺(PEIE)涂层作为缓冲层, 成功在其顶部溅射20 nm的ITO作为中间层, 构建了效率为22.23%的钙钛矿/钙钛矿/硅叠层太阳电池. 可以预见, 针对中间互连层的未来研究重点是进一步提升透光率、降低横向电流、提高致密程度等.

    多结叠层太阳电池的最后一个问题是工艺兼容问题[70]. 多结叠层太阳电池中各功能层采用不同的沉积方法依次堆叠, 增加了制备工艺的复杂性. 因此功能层间制备工艺的兼容性尤为重要, 主要涉及正交溶剂匹配、退火温度兼容、溅射伤害等. 克服溶剂相容性问题, 避免破坏已有子电池的策略包括: 1)将传统的钙钛矿前驱液溶剂二甲基甲酰胺/二甲基亚砜(DMF/DMSO)替换为新型低极性溶剂体系, 如乙腈/甲胺(ACN/MA)[69]; 2)采用无溶剂方法沉积子电池, 利用真空沉积方法制备具有最佳带隙但成分复杂的钙钛矿; 3)对中间互连层设计进行优化, 在光学透明度、漏电流、电阻损耗和隔绝能力之间取得良好的平衡[71,72], 使其可以作为一个物理屏障, 保护底层不受后续溶剂的影响[73]. 这种子电池之间的工艺兼容对于大面积电池制备尤为重要, 亦有利于提升电池的长期稳定性.

    多结叠层太阳电池包含多个光吸收层, 增强了光吸收, 减少了载流子热损耗, 在提升太阳光谱利用率的同时也带来了新的挑战. 例如, 如何实现溶剂间的正交性, 如何改善中间互连层的光电性能并增加其隔绝能力, 如何抑制宽带隙钙钛矿的相分离问题等等. 本节总结了钙钛矿/钙钛矿/有机、钙钛矿/钙钛矿/钙钛矿和钙钛矿/钙钛矿/硅三种钙钛矿基叠层太阳电池的最新进展, 重点介绍了它们制备过程、优化方法、电池性能和稳定性. 图1(b)汇总了现阶段三结叠层电池的能量转换效率.

    在三结叠层电池中, Isikgor等[74]率先采用有机吸收材料构建窄带隙子电池, 制备了第一个三结钙钛矿/钙钛矿/有机叠层太阳电池. 其中, 顶电池采用2.05 eV的宽带隙钙钛矿Cs0.15MA0.15FA0.70Pb(I0.15Br0.85)3 (其中, MA是甲胺阳离子, FA是甲脒阳离子), 中间电池采用禁带宽度为1.62 eV的Cs0.15MA0.15FA0.70Pb(I0.85Br0.15)3钙钛矿层, 二者之间通过由C60(20 nm)/BCP(8 nm)/IZO(2 nm)/NiOx(15 nm)组成的中间互连层连接(图3(a)), 其中BCP是浴铜灵(双环[1.1.1]戊烷). 最后使用三元有机体异质结(bulk-heterojunction, BHJ)PM6:BTP-eC9:PC71BM(约100 nm)为活性层构筑顶电池, 其中PM6是聚醚型聚合物供体, BTP-eC9是非富勒烯受体, PC71BM是[6,6]-苯基C71丁酸甲酯. 中间电池和顶电池之间的互连层采用C60(20 nm)/BCP(8 nm)/IZO(2 nm)/MoO3(10 nm), 最后沉积10 nm的PDINO((N, N-二甲基铵N-氧化物)丙基苝二亚胺)电子提取层和100 nm厚的银电极. 但由于宽带隙钙钛矿与C60电子传输层之间存在能级失配问题, 底电池表现出高达0.78 V的开路电压损失, 同时中间电池和有机电池的开路电压损失分别为0.44 V和0.48 V. 最终活性面积为0.1 cm2的三结叠层电池开路电压为3.03 V, 能量转换效率为19.4%, 短路电流密度为9.1 mA/cm2, 填充因子为70.4%. 该研究证明采用钙钛矿层与有机BHJ层结合构建三结叠层太阳电池的可行性, 表明该体系的电池性能仍有较大提升空间.

    图 3 (a) 叠层太阳电池结构及横截面SEM图像[74]; (b) 子电池及叠层太阳电池J-V曲线[75]; (c) 全钙钛矿叠层太阳电池结构[77]; (d) 叠层太阳电池在暗态和光照下的J-V曲线[76]; (e) 钙钛矿前驱体结晶过程示意图[79]; (f) 钙钛矿的相偏析抑制机制示意图[78]\r\nFig. 3. (a) Schematic structure of tandem solar cells and cross sectional SEM image[74]; (b) J-V curves of sub-cells and three-junction tandem solar cell[75]; (c) schematic structure of all perovskite triple-junction tandem solar cells[77]; (d) J-V curves of tandem solar cells in dark state and light[76]; (e) schematics of perovskite precursors during the crystallization process[79]; (f) schematic illustration of the suppression mechanism of light-induced phase segregation[78].
    图 3  (a) 叠层太阳电池结构及横截面SEM图像[74]; (b) 子电池及叠层太阳电池J-V曲线[75]; (c) 全钙钛矿叠层太阳电池结构[77]; (d) 叠层太阳电池在暗态和光照下的J-V曲线[76]; (e) 钙钛矿前驱体结晶过程示意图[79]; (f) 钙钛矿的相偏析抑制机制示意图[78]
    Fig. 3.  (a) Schematic structure of tandem solar cells and cross sectional SEM image[74]; (b) J-V curves of sub-cells and three-junction tandem solar cell[75]; (c) schematic structure of all perovskite triple-junction tandem solar cells[77]; (d) J-V curves of tandem solar cells in dark state and light[76]; (e) schematics of perovskite precursors during the crystallization process[79]; (f) schematic illustration of the suppression mechanism of light-induced phase segregation[78].

    全钙钛矿三结叠层太阳电池的研究最早始于2019年, 英国牛津大学的Snaith团队[75]提出了第一个全钙钛矿三结叠层太阳电池. 他们采用乙腈/甲胺混合溶剂配置钙钛矿前驱体溶液以实现自下而上地沉积钙钛矿层. 电池所采用的钙钛矿组分分别为FA0.83Cs0.17Pb(Br0.7I0.3)3(1.94 eV)、MAPbI3(1.57 eV)和MAPb0.75Sn0.25I3(1.34 eV). 为了稳定的宽带隙钙钛矿, 他们在宽带隙钙钛矿前驱体中加入2%的钾离子来抑制离子迁移, 减少回滞行为, 并使用氢碘酸和氢溴酸作为添加剂实现微米范围内的表观晶粒. 最终制备的器件效率为6.7%, 开路电压为2.83 V. 同时, 他们通过光学和电子模拟, 预测出该三结叠层电池可以实现26.7%的能量转换效率(图3(b)), 该电池除电极外的所有活性层均由溶液处理制成, 表明了采用大规模、低成本、可印刷的技术制备多结全钙钛矿叠层电池的可能性. 2020年, 荷兰埃因霍芬理工大学的Janssen团队[76]针对中间互连层和溶剂工程继续展开研究, 优化了钙钛矿的两步法制备工艺并设计了低电阻率的中间互连层. 采用C60代替PCBM, 并在原子层沉积的SnO2和PEDOT:PSS(聚(3, 4-乙烯二氧噻吩):聚(苯乙烯磺酸盐))之间插入超薄金层以改善电流匹配. 如图3(d)所示, 他们采用禁带宽度为1.73, 1.57, 1.23 eV的钙钛矿材料构建的全钙钛矿三结叠层太阳电池实现了16.8%的转换效率. 同年, 南京大学谭海仁课题组[77]开发了与钙钛矿层溶液加工兼容的中间互连层, 如图3(c)所示, 他们设计制备了NiOx/PTAA(聚[双(4-苯基)(2, 4, 6-三甲基苯基)胺])双层结构作为中间子电池的空穴传输层, 较厚的NiOx层有助于覆盖底电池的粗糙表面, 增加PTAA层的覆盖度, 从而获得了致密且具有优良导电性的互连层; 同时优化了金层的厚度, 以最小化光吸收损失; 实现了最理想的禁带宽度匹配, 即采用禁带宽度为1.99, 1.60, 1.22 eV的钙钛矿材料来构建叠层电池. 另外, 采用Pb(SCN)2作为添加剂改善宽带隙钙钛矿的晶体质量并增加晶粒尺寸. 最终基于溶液法制备的全钙钛矿叠层太阳电池获得了81%的填充因子和20.1%的能量转换效率. 该器件在氮气手套箱中暗态保存325天后, 可以保持初始效率的95%. 综上所述, 全钙钛矿叠层电池的初期研究主要针对能带匹配和中间互连层的结构进行优化研究, 伴随着双结叠层电池性能的不断提升, 三结叠层电池的性能也逐渐增加.

    在取得初步成果之后, 人们开始关注三结叠层太阳电池中顶部电池的光稳定性问题, 即宽带隙钙钛矿材料容易发生光致相分离, 显著地影响器件性能和长期稳定性. 加拿大多伦多大学Sargent团队[78]提出调控晶格畸变可以抑制碘溴混合钙钛矿中的光致相偏析问题. 减小A位阳离子和碘离子之间的距离会增加离子迁移能垒, 如图3(f), 铷具有比铯更小的阳离子半径, 可以掺杂到无机钙钛矿晶格中, 并且铷掺杂含量的上限与溴的掺杂量成正相关. 因此用铷取代无机钙钛矿CsPbI1.75Br1.25中的部分铯可以增加钙钛矿的光稳定性. 他们将该材料应用到全钙钛矿三结叠层太阳电池中, 制备的器件展现的开路电压为3.21 V, 效率达到了24.3%, 且在最大功率点运行420 h后, 仍能保持其初始效率的80%. 该研究为抑制宽带隙钙钛矿太阳电池的光诱导相偏析现象提供了思路, 有效地提高了多结叠层太阳电池的能量转换效率和稳定性. 2023年, 该课题组联合荷兰埃因霍芬理工大学的Janssen团队[79]提出卤化二铵盐的体相和界面双重修饰策略, 旨在改善2.0 eV钙钛矿体相和界面的卤化物均匀性, 以减少能量损失. 他们将丙二铵离子掺入宽带隙钙钛矿中, 优化薄膜结晶生长过程, 改善卤素离子的均匀性, 同时丙二铵离子在晶界附近的钝化效应大大抑制了钙钛矿/电荷传输层界面的非辐射复合(图3(e)). 基于1.97 eV的宽带隙钙钛矿材料构筑的单结反式钙钛矿电池效率为15.3%, 达到S-Q极限的86%, 同时开路电压达到了1.44 V. 将1.97 eV钙钛矿与1.61 eV 和1.25 eV的钙钛矿吸光层结合在一起, 构筑的三结叠层电池展现了3.33 V的开路电压和25.1%的能量转换效率(认证效率为23.87%). 因此, 改善宽带隙钙钛矿薄膜质量和提升宽带隙钙钛矿子电池的光电性能是提升三结叠层电池的重要课题.

    早在2018年, 瑞士联邦理工学院的Ballif团 队[67]就已验证了钙钛矿/钙钛矿/硅叠层太阳电池的概念的可行性. 他们改变了钙钛矿吸收层的带隙和中间互连层的厚度, 通过蒸发-旋涂工艺制备了光学带隙为1.53—1.55 eV和1.77—1.80 eV的钙钛矿CsFAPbIBr (图4(a)). 为了合理分配电流, 他们通过改变铯和溴的含量, 将顶部电池吸收边缘由1.77 eV略微蓝移至1.80 eV, 将中间电池的吸收边缘由1.55 eV略微红移至1.53 eV. 同时降低顶电池的钙钛矿层厚度, 进一步减小其吸收以增加中间电池的电流密度. 最终将三结电池的短路电流密度从7.7 mA/cm2提高到9.6 mA/cm2, 并实现了高达2.69 V的开路电压, 取得了14.0%的能量转换效率. 直至2022年, 钙钛矿/钙钛矿/硅叠层太阳电池才再次取得突破性进展, 悉尼大学的Ho-Baillie团队[80]报道了面积为1.03 cm2, 效率超过 20%的三结叠层电池, 电池的开路电压为2.74 V, 填充因子为86%, 这是三结叠层光伏的一个重要里程碑. 在该研究中, 他们使用无甲胺的1.55 eV的纯碘基钙钛矿Cs0.1FA0.9PbI3构建中间层电池, 采用1.90 eV的混合卤化物钙钛矿Cs0.2FA0.8Pb(I0.45Br0.55)3构建顶电池. 同时对于顶电池开发了MeO-2PACz/溅射NiOx作为空穴传输层(图4(b)), 其中MeO-2PACz是[2-(3, 6-二甲氧基–9H-咔唑–9-基)乙基]膦酸. 与仅使用NiOx的器件相比, MeO-2PACz和溅射NiOx(非溶液处理的NiOx)的组合增强了三结电池的性能. 对于电子传输层, 采用SnO2/C60组合与1 nm厚的LiF层, 同时采用20 nm ITO和超薄金作为子电池间的连接层, 最后为了增加抗反射和光捕获能力, 蒸镀PDMS(聚二甲基硅氧烷)层, 保证了合理的电流匹配. 以上内容表明三结叠层电池中光管理尤为重要.

    图 4 (a) 叠层太阳电池结构及截面SEM图像[67]; (b) 叠层太阳电池结构及截面SEM图像[80]; (c) 性能最佳的叠层太阳电池J-V曲线, 插图为叠层太阳电池结构示意图[69]; (d) 反溶剂沉积方法和气淬技术制备的钙钛矿电池横截面SEM图像[81]\r\nFig. 4. (a) Schematic structure of tandem solar cells and cross sectional SEM images[67]; (b) schematic structure of tandem solar cells and cross sectional SEM images[80]; (c) J-V curve of the champion tandem solar cell, illustrated with schematic structure of the tandem solar cell [69]; (d) cross sectional SEM image of perovskite cell prepared by anti-solvent dripping and gas quenching method[81].
    图 4  (a) 叠层太阳电池结构及截面SEM图像[67]; (b) 叠层太阳电池结构及截面SEM图像[80]; (c) 性能最佳的叠层太阳电池J-V曲线, 插图为叠层太阳电池结构示意图[69]; (d) 反溶剂沉积方法和气淬技术制备的钙钛矿电池横截面SEM图像[81]
    Fig. 4.  (a) Schematic structure of tandem solar cells and cross sectional SEM images[67]; (b) schematic structure of tandem solar cells and cross sectional SEM images[80]; (c) J-V curve of the champion tandem solar cell, illustrated with schematic structure of the tandem solar cell [69]; (d) cross sectional SEM image of perovskite cell prepared by anti-solvent dripping and gas quenching method[81].

    除了合理的电流分配外, 顶部钙钛矿溶剂对中间钙钛矿的溶解也是一个关键性问题. 对此, 2022年韩国首尔国立大学的Kim课题组[69]采用乙腈和甲胺的乙醇溶液作为钙钛矿前驱体的混合溶剂, 与传统溶剂DMF/DMSO相比, 该溶剂体系具有较强的挥发性, 可避免在制备顶电池时溶剂渗透溶解已经制备好的中间电池, 实现在没有原子沉积的致密保护层的情况下构建叠层电池. 为了增强钙钛矿薄膜结晶度和光吸收能力, 研究者通过添加尿素, 将禁带宽度为1.96 eV顶电池的能量转换效率从6.4%提高至13.9%. 在高挥发性溶剂和尿素添加剂的协同作用下, 三结叠层电池展示出22.23%的能量转化效率(图4(c)). 同年, 德国Fraunhofer太阳能研究所的Heydarian团队[81]提出气体淬火的策略, 并动态旋涂钙钛矿溶液, 防止中间钙钛矿的溶解, 实现无损沉积顶部钙钛矿(图4(d)). 中间钙钛矿吸收层成分为Cs0.05(FA0.9MA0.1)0.95Pb(I0.95Br0.05)3, 带隙为1.56 eV, 而顶部钙钛矿吸收层是Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3, 带隙为1.83 eV. 该器件显示出2.86 V的开路电压, 能量转换效率超过20.0%. 沙特阿卜杜拉国王科技大学Wolf团队[82]进一步提出双添加剂策略, 如图5(a)所示, 采用硫氰酸钾和碘化甲胺共同修饰2.0 eV的Cs0.1FA0.9PbBr2.1I0.9钙钛矿层, 其中硫氰酸根可以扩大晶粒尺寸, 钝化缺陷. 钾离子可以固定卤化物, 防止卤化物空位的形成, 甲胺离子通过双置换反应消除钙钛矿薄膜中残留的硫氰酸根, 抑制相偏析, 稳定顶部电池, 最终2.0 eV的宽带隙单节钙钛矿电池效率为15.0%, 开路电压为1.38 V, 连续光照300 min后效率保持初始值的98%. 采用的中间钙钛矿吸收层为Rb0.05Cs0.1FA0.85PbI3, 带隙为1.52 eV. 传统超薄金连接层在光响应区域内吸收严重, 限制中间电池的短路电流密度, 为了平衡顶部电池和中间电池的电流分配, 该团队采用溅射IZO代替金, 最终制备的面积为1 cm2的三结叠层器件开路电压达到3.04 V, 电流约12 mA/cm2, 效率超过26%. 该器件在氮气手套箱85 ℃的热板上老化1000 h后, 仍然保持88.5%的初始效率.

    图 5 (a) 添加剂工程工作机理示意图[82]; (b) 宽带隙钙钛矿混合相和分离相示意图[83]; (c) 薄膜的XRD图[84]; (d) 经认证的叠层太阳电池J-V曲线[85]\r\nFig. 5. (a) Schematic diagram of the working mechanism of additive engineering[82]; (b) illustration of the mixed-phase and segregated-phase of wide-bandgap perovskites[83]; (c) XRD pattern of film[84]; (d) certified tandem solar cells J-V curves[85].
    图 5  (a) 添加剂工程工作机理示意图[82]; (b) 宽带隙钙钛矿混合相和分离相示意图[83]; (c) 薄膜的XRD图[84]; (d) 经认证的叠层太阳电池J-V曲线[85]
    Fig. 5.  (a) Schematic diagram of the working mechanism of additive engineering[82]; (b) illustration of the mixed-phase and segregated-phase of wide-bandgap perovskites[83]; (c) XRD pattern of film[84]; (d) certified tandem solar cells J-V curves[85].

    电子科技大学刘明侦团队[83]提出在宽带隙钙钛矿Rb0.05Cs0.12FA0.83PbI1–xBr2Clx (0 < x < 0.05)中掺杂小离子半径的铷离子和氯离子, 显著抑制了卤化物偏析, 提高了晶体质量, 减少了宽禁带钙钛矿内部的非辐射复合缺陷密度, 实现A位阳离子和X位卤素离子的均匀分布(图5(b)), 同时增加了表面电位的均匀性, 从而获得高质量宽带隙钙钛矿材料. 同时应用Cs0.05(FA0.98MA0.02)0.95Pb(I0.98Br0.02)3 (约1.53 eV)作为中间带隙钙钛矿薄膜, 面积为1.04 cm2的三结叠层电池展现的开路电压接近3.0 V, 功率转换效为25.0% (认证效率为24.19%), 未封装的电池在最大功率点下连续工作100 h后, 能量转换效率下降到初始值的86.8%. 卡尔斯鲁厄理工学院Paetzold团队[84]开发了一种高性能中间钙钛矿子电池, 采用真空辅助生长技术获得稳定的高质量(无皱纹、裂纹和针孔)纯α相FAPbI3钙钛矿薄膜(图5(c)), 带隙为1.52 eV接近最佳模拟值. 结合宽带隙Cs0.2FA0.8Pb(I0.5Br0.5)3(1.84 eV)钙钛矿顶部电池, 构筑的三结叠层电池功率转换效率为24.4%, 短路电流密度为11.6 mA/cm2, 开路电压为2.84 V. 在85 ℃的暗态手套箱中储存1081 h后, 未封装三结器件仍可保留高达96.6%的初始效率. 新加坡国立大学的侯毅团队[85]提出采用拟卤化物氰酸根替代溴离子, 其有效离子半径(1.97 Å)与溴化物(1.95 Å)相当. 结果表明氰酸根可以进入钙钛矿晶格中, 产生显著的晶格畸变, 促进碘离子和溴离子的均匀分布. 基于氰酸根的钙钛矿结构表现出较强的缺陷形成能和较低的非辐射复合损失. 最终构筑的反式结构钙钛矿(1.93 eV)单结器件展现了1.422 V的开路电压, 开路电压与填充因子乘积超过Shockley-Queisser极限的80%. 最终获得效率为 27.62% (图5(d), 认证效率为 27.10%)的钙钛矿/钙钛矿/硅叠层太阳电池, 面积为1 cm2. 以上结果再次表明, 优化宽带隙钙钛矿子电池的光电性能可显著提升三结叠层电池的能量转换效率.

    本文综述了钙钛矿基三结叠层太阳电池的研究进展. 表1总结了当前三结太阳电池中顶部钙钛矿吸收层的组成和带隙, 及各单结太阳能电池的光伏性能. 表2汇总了钙钛矿/钙钛矿/有机、全钙钛矿和钙钛矿/钙钛矿/硅叠层太阳电池的光电参数, 它们的最高效率分别是19.4%[75], 23.87%[78]和27.1%[85]. 该结果证明了三结电池的研究价值, 但该效率仍然低于它们的理论效率极限, 甚至低于相应单结电池效率. 因此, 探讨进一步提升电池性能的研究方向至关重要.

    表 1  单节宽带隙钙钛矿太阳电池光伏性能汇总表
    Table 1.  Summary of photovoltaic performance of single wide-band gap perovskite solar cells.
    组分 禁带宽度/eV 开路电压/V 短路电流密度/(mA·cm–2) 填充 因子/% 能量转换效率/% Ref.
    Cs0.15MA0.15FA0.70Pb(I0.15Br0.85)3 2.05 1.27 9.4 70.4 8.4 [74]
    FA0.83Cs0.17Pb(Br0.7I0.3)3 1.94 1.28 11.9 76.0 11.6 [75]
    Cs0.2FA0.8PbI0.9Br2.1 1.73 1.07 9.9 76.0 8.1 [76]
    Cs0.2FA0.8PbI0.9Br2.1 1.99 1.262 11.2 73.5 10.4 [77]
    Rb0.15Cs0.85PbI1.75Br1.25 2.0 1.30 12.4 84.7 13.6 [78]
    Cs0.15FA0.85Pb(I0.4Br0.6)3 1.97 1.44 12.8 83.0 15.3 [79]
    CsFAPbIBr 1.8 \ \ \ \ [67]
    Cs0.2FA0.8Pb(I0.45Br0.55)3 1.90 1.09 11.7 71 9.1 [80]
    MAPb(I0.5Br0.35Cl0.15)3 1.96 1.28 14.16 76.6 13.88 [69]
    Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 1.83 1.12 13.6 74.6 11.3 [81]
    Cs0.1FA0.9PbBr2.1I0.9 1.98 1.38 14.0 76.6 15.0 [82]
    Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 1.98 1.33 13.05 76.7 13.4 [83]
    FA0.8Cs0.2Pb(I0.5Br0.5)3 1.84 1.27 16.4 77.0 16.0 [84]
    FA0.60MA0.15Cs0.25Pb(I0.45Br0.5OCN0.05)3 1.93 1.422 14.18 83.79 16.9 [85]
    下载: 导出CSV 
    | 显示表格

    在开路电压方面, 根据模拟计算[18], 全钙钛矿和钙钛矿/钙钛矿/硅叠层太阳电池的理论开路电压分别为3.54 V和3.24 V. 而目前已经达到的开路电压分别为3.33 V和3.13 V. 考虑到宽带隙钙钛矿子电池存在较高的开路电压损失, 因此, 在未来需通过组分工程、添加剂工程、结晶调控和界面钝化来获得高质量宽带隙钙钛矿薄膜[8689]. 另外, 传统电荷传输材料与宽带隙的钙钛矿材料之间的能带匹配问题尚未得到充分研究[90]. 此外, 开发无光电损耗的中间互连层对实现高开路电压也至关重要[91]. 在短路电流密度方面, 全钙钛矿和钙钛矿/钙钛矿/硅叠层太阳电池的最大短路电流密度分别可达到12.0 mA/cm2和14.1 mA/cm2. 然而, 这两种结构的实际最大短路电流密度值仍低于预期, 全钙钛矿为9.7 mA/cm2, 钙钛矿/钙钛矿/硅叠层太阳电池为11.9 mA/cm2. 造成该现象主要有两个原因, 一方面, 三结叠层太阳电池有多个中间互连层, 引入寄生吸收[92], 导致最终器件的短路电流密度降低. 为了使短路电流密度最大化, 需要采用高透明度、厚度适中的材料作为电极、中间互连层和电荷传输层. 另一方面, 目前的三结叠层电池尚未能采用最佳的带隙组合. 钙钛矿/钙钛矿/硅太阳电池需要进一步降低中间电池钙钛矿的禁带宽度(采用FAPbI3或含锡钙钛矿)[93], 钙钛矿/钙 钛矿/有机太阳电池需要降低有机吸收层的禁带 宽度, 以期望在叠层器件中实现更好的电流匹配. 除却提升电池性能, 放大三结叠层电池的尺寸将是未来的首要研究方向. 鉴于三结叠层太阳能电池的复杂工艺, 采用全蒸发技术的制备钙钛矿层和电荷传输层将是下一个焦点, 这有利于构建大面积电池, 增加良率和电池稳定性. 同时, 伴随着柔性硅电池的出现, 以及全钙钛矿叠层太阳电池和钙钛矿/钙钛矿/有机叠层电池的自身优势, 制备柔性三结叠层太阳电池亦是一个重要发展方向, 是进一步增加柔性电池功质比的重要策略.

    最后, 与三结叠层太阳电池的发展并行的精确表征对于提高测量可靠性和更好地了解这项新技术的局限性至关重要. 正确调整太阳模拟器的光谱[94], 使所有子电池产生与参考光谱下相同的电流, 这一点尤为重要. 此外, 目前在三结叠层太阳电池方面的研究主要集中在效率提升上, 而对其稳定性研究较少. 随着能量转换效率不断增强, 钙钛矿基太阳电池需要解决稳定性以实现未来商业化.

    表 2  单片三结钙钛矿基叠层太阳电池光伏性能汇总表
    Table 2.  Summaries for PV performance of monolithic triple-junction perovskite-based tandem solar cells.
    类型 宽带隙 中间带隙 窄带隙 开路电压/V 短路电流密度/(mA·cm–2) 填充因子/% 正扫/反扫效率/% 认证效率/% 面积/cm2 Ref.
    钙钛矿/钙钛矿/有机 Cs0.15MA0.15FA0.70Pb (I0.15Br0.85)3 (2.05 eV) Cs0.15MA0.15FA0.70Pb (I0.85Br0.15)3 (1.62 eV) PM6:BTP-eC9:PCBM (1.33 eV) 3.03 9.1 70.4 19.4 \ 0.1 [74]
    \ \ \ 19.2
    钙钛矿/钙钛矿/钙钛矿 FA0.83Cs0.17Pb(Br0.7I0.3)3 (1.94 eV) MAPbI3 (1.57 eV) MAPb0.75Sn0.25I3 (1.34 eV) 2.7 8.3 0.43 6.7 \ 0.092 [75]
    \ \ \ \
    Cs0.1(FA0.66MA0.34)0.9PbI2Br (1.73 eV) FA0.66MA0.34PbI2.85Br0.15 (1.57 eV) FA0.66MA0.34Pb0.5Sn0.5I3 (1.23eV) 2.78 7.4 81 17.3 \ 0.067 [76]
    2.78 7.42 82 17.0
    Cs0.2FA0.8PbI0.9Br2.1 (1.99 eV) Cs0.05FA0.95PbI2.55Br0.45 (1.60 eV) MA0.3FA0.7Pb0.5Sn0.5I3 (1.22 eV) 2.80 8.8 81 20.1 \ 0.049 [77]
    2.793 8.8 80.7 19.9
    Rb0.15Cs0.85PbI1.75Br1.25 (2.0 eV) Cs0.05FA0.9MA0.05Pb (I0.9Br0.1)3 (1.60 eV) Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3-0.05SnF2 (1.22 eV) 3.215 9.71 77.93 24.33 23.29 0.049 [78]
    3.210 9.63 78.67 24.32
    Cs0.15FA0.85Pb(I0.4Br0.6)3 (1.97 eV) Cs0.05FA0.9MA0.05Pb (I0.85Br0.15)3 (1.77 eV) Cs0.05FA0.7MA0.25 Pb0.5Sn0.5I3 (1.22 eV) 3.33 9.7 78 25.1 23.87 0.049 [79]
    \ \ \ \
    钙钛矿/钙钛矿/硅 CsFAPbIBr (1.8 eV) CsFAPbIBr (1.53 eV) Si (1.10 eV) 2.688 7.7 68.0 14.0 \ 1.42 [67]
    2.692 7.7 58.7 12.1
    Cs0.2FA0.8Pb(I0.45Br0.55)3 (1.90 eV) Cs0.1FA0.9PbI3 (1.55 eV) Si (1.10 eV) 2.74 8.54 86.0 20.1 \ 1.03 [80]
    \ \ \ \
    MAPb(I0.5Br0.35Cl0.15)3 (1.96 eV) Cs0.2MA0.05FA0.75PbI3 (1.56 eV) Si (1.10 eV) 2.78 10.18 78.60 22.23 \ 0.1875 [69]
    2.78 10.19 76.90 21.79
    Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 (1.83 eV) Cs0.05(FA0.9MA0.1)0.95Pb (I0.95Br0.05)3 (1.56 eV) Si (1.10 eV) 2.87 8.9 78.1 20.1 \ 1.0 [81]
    2.86 8.9 77.9 20.0
    Cs0.1FA0.9PbBr2.1I0.9 (1.98 eV) Rb0.05Cs0.1FA0.85PbI3 (1.52 eV) Si (1.10 eV) 3.04 11.9 72.9 26.4 \ 1.0 [82]
    3.01 11.9 71.1 25.5
    Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 (1.98 eV) Cs0.05(FA0.98MA0.02)0.95Pb (I0.98Br0.02)3 (1.55 eV) Si (1.10 eV) 2.995 11.76 70.80 25.0 24.19 1.04 [83]
    2.980 11.73 68.4 23.9
    FA0.8Cs0.2Pb(I0.5Br0.5)3 (1.84 eV) FAPbI3 (1.52 eV) Si (1.10 eV) 2.84 11.6 0.74 24.4 \ 1.0 [84]
    2.86 11.5 0.73 24.0
    FA0.60MA0.15Cs0.25Pb (I0.45Br0.5OCN0.05)3 (1.93 eV) FA0.9Cs0.1PbI3 (1.55 eV) Si (1.10 eV) 3.132 11.58 76.15 27.62 27.1 1.0 [85]
    \ \ \ \
    下载: 导出CSV 
    | 显示表格
    [1]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [2]

    Luo X H, Liu X, Lin X S, Wu T H, Wang Y B, Han Q F, Wu Y Z, Segawa H, Han L Y 2024 ACS Energy Lett. 9 1487Google Scholar

    [3]

    Liao J F, Wu W Q, Jiang Y, Zhong J X, Wang L Z, Kuang D B 2020 Chem. Soc. Rev. 49 354Google Scholar

    [4]

    NREL, Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10]

    [5]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860Google Scholar

    [6]

    Hörantner M T, Leijtens T, Ziffer M E, Eperon G E, Christoforo M G, Mcgehee M D, Snaith H J 2017 ACS Energy Lett. 2 2506Google Scholar

    [7]

    Wang Y, Ye S Y, Lim J W M, Giovanni D, Feng M J, Fu J H, Krishnamoorthy H N S, Zhang Q N, Xu Q, Cai R, Sum T C 2023 Nat. Commun. 14 6293Google Scholar

    [8]

    Marchat C, Williams R M 2024 Photochem. Photobiol. Sci. 23 1Google Scholar

    [9]

    Bremner S P, Levy M Y, Honsberg C B 2008 Prog. Photovoltaics 16 225Google Scholar

    [10]

    Yang J M, Bao Q Y, Shen L, Ding L M 2020 Nano energy 76 105019Google Scholar

    [11]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar

    [12]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [13]

    Yeom K M, Kim S U, Woo M Y, Noh J H, Im S H 2020 Adv. Mater. 32 2002228Google Scholar

    [14]

    张云龙, 陈新亮, 周忠信, 赵颖, 张晓丹 2021 太阳能学报 42 49Google Scholar

    Zhang Y L, Chen X L, Zhou Z X, Zhao Y, Zhang X D 2021 Acta Energiae Solaris Sin. 42 49Google Scholar

    [15]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar

    [16]

    Zhang Z C, Chen W J, Jiang X X, Cao J L, Yang H D, Chen H Y, Yang F, Shen Y X, Yang H Y, Cheng Q R, Chen X N, Tang X H, Kang S Q, Ou X M, Brabec C J, Li Y W, Li Y F 2024 Nat. Energy 9 592Google Scholar

    [17]

    Wang X, Zhang D, Liu B Z, Wu X, Jiang X F, Zhang S F, Wang Y, Gao D P, Wang L N, Wang H L, Huang Z M, Xie X F, Chen T, Xiao Z G, He Q Y, Xiao S, Zhu Z L, Yang S F 2023 Adv. Mater. 35 2305946Google Scholar

    [18]

    Shen H P, Walter D, Wu Y L, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R 2020 Adv. Energy Mater. 10 1902840Google Scholar

    [19]

    Bastiani M D, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, IsikgorS F H, Liu J, Xu L J, Chen B, Kerschaver E V, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar

    [20]

    Shi Y T, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [21]

    Zhang H, Park N G 2024 DeCarbon 3 100025Google Scholar

    [22]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, Mcgehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [23]

    Martinho F 2021 Energy Environ. Sci. 14 3840Google Scholar

    [24]

    Cheng Y H, Ding L M 2021 SusMat 1 324Google Scholar

    [25]

    Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W, Dimroth F 2009 Appl. Phys. Lett. 94 223504Google Scholar

    [26]

    Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N Z, Mo D, Zhang Y Z, He F 2020 Joule 4 688Google Scholar

    [27]

    Zhang Z H, Li Z C, Meng L Y, Lien S Y, Gao P 2020 Adv. Funct. Mater. 30 2001904Google Scholar

    [28]

    Tong J H, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2021 ACS Energy Lett. 6 232Google Scholar

    [29]

    Montecucco R, Quadrivi E, Po R, Grancini G 2021 Adv. Energy Mater. 11 2100672Google Scholar

    [30]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar

    [31]

    Huang T Y, Tan S, Nuryyeva S, Yavuz I, Babbe F, Zhao Y P, Abdelsamie M, Weber M H, Wang R, Houk K N , Sutter-Fella C M, Yang Y 2021 Sci. Adv. 7 eabj1799Google Scholar

    [32]

    Correa-Baena J P, Lou Y Q, Brenner T M, Snaider J, Sun S, Li X Y, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [33]

    Enkhbayar E, Otgontamir N, Kim S Y, Lee J, Kim J H 2024 ACS Appl. Mater. Interfaces 16 35084Google Scholar

    [34]

    Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D 2019 Energy Environ. Sci. 12 2778Google Scholar

    [35]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [36]

    Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite A D 2023 Chem. Rev. 123 9565Google Scholar

    [37]

    Li X, Aftab S, Abbas A, Hussain S, Aslam M, Kabir F, Abd-Rabboh H S M, Hegazy H H, Xu F, Ansari M Z 2023 Nano Energy 118 108979Google Scholar

    [38]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [39]

    Dong Z J, Li W P, Wang H L, Jiang X Y, Liu H C, Zhu L Q, Chen H N 2021 Solar RRL 5 2100370Google Scholar

    [40]

    Kerner R A, Xu Z J, Larson B W, Rand B P 2021 Joule 5 2273Google Scholar

    [41]

    Xu J X, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest M F A M, Berry J J, Luther J M, Holman Z C, McGehee M D 2020 Science 367 1097Google Scholar

    [42]

    李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗 2024 太阳能学报 45 30Google Scholar

    Li Z X, Feng X Z, Chen X G, Liu X P, Dai S Y, Cai M L 2024 Acta Energiae Solaris Sin. 45 30Google Scholar

    [43]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar

    [44]

    Walsh A 2015 J. Phys. Chem. C 119 5755Google Scholar

    [45]

    Sala J, Heydarian M, Lammar S, Abdulraheem Y, Aernouts T, Hadipour A, Poortmans J 2021 ACS Appl. Energy Mater. 4 6377Google Scholar

    [46]

    Reza K M, Gurung A, Bahrami B, Chowdhury A H, Ghimire N, Pathak R, Rahman S I, Laskar M A R, Chen K, Bobba R S, Lamsal B S, Biswas L K, Zhou Y, Logue B, Qiao Q 2021 Solar RRL 5 2000740Google Scholar

    [47]

    Zhang S Y, Tang M C, Fan Y Y, Li R P, Nguyen N V, Zhao K, Anthopoulos T D, Hacker C A 2020 ACS Appl. Mater. Interfaces 12 34402Google Scholar

    [48]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidamiinov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar

    [49]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, L ouks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y F, Zhu K 2022 Science 378 1295Google Scholar

    [50]

    Jaysankar M, Qiu W, Bastos J, Tait J G, Debucquoy M, Paetzold U W, Cheyns D, Poortmans J 2016 J. Mater. Chem. A 4 10524Google Scholar

    [51]

    Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y H, Mccarthy M M, Unger E, Getautis V, Widmer-Cooper A, Herz L M, Snaith H J 2023 Adv. Mater. 35 2211742Google Scholar

    [52]

    An Y D, Zhang N, Zeng Z X, Cai Y T, Jiang W L, Qi F, Ke L Y, Lin F R, Tsang S W, Shi T T, Jen A K Y, Yip H L 2024 Adv. Mater. 36 2306568Google Scholar

    [53]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [54]

    Kim D H, Muzzillo C P, Tong J H, Palmstrom A F, Larson B W, Choi C, Harvey S P, Glynn S, Whitaker J B, Zhang F, Li Z, Lu H P, Van Hest M F A M, Berry J J, Mansfield L M, Huang Y, Yan Y F, Zhu K 2019 Joule 3 1734Google Scholar

    [55]

    Thiesbrummel J, Peña-Camargo F, Brinkmann K O, Gutierrez-Partida E, Yang F J, Warby J, Albrecht S, Neher D, Riedl T, Snaith H J, Stolterfoht M, Lang F 2023 Adv. Energy Mater. 13 2202674Google Scholar

    [56]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [57]

    Chen J B, Wang D, Chen S, Hu H, Li Y, Huang Y L, Zhang Z Q, Jiang Z Y, Xu J M, Sun X Y, So S K, Peng Y J, Wang X Z, Zhu X J, Xu B M 2022 ACS Appl. Mater. Interfaces 14 43246Google Scholar

    [58]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A U, Van Kerschaver E, Baran D, Mcculloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, Wolf S D 2021 Joule 5 1566Google Scholar

    [59]

    Yu Y, Liu R, Liu C, Shi X L, Yu H, Chen Z G 2022 Adv. Energy Mater. 12 2201509Google Scholar

    [60]

    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F, Mcgehee M D 2018 ACS Energy Lett. 3 2694Google Scholar

    [61]

    Caprioglio P, Smith J A, Oliver R D J, Dasgupta A, Choudhary S, Farrar M D, Ramadan A J, Lin Y H, Greyson Christoforo M, Ball J M, Diekmann J, Thiesbrummel J, Zaininger K A, Shen X Y, Johnston M B, Neher D, Stolterfoht M, Snaith H J 2023 Nat. Commun. 14 932Google Scholar

    [62]

    Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J 2016 Science 354 861Google Scholar

    [63]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 05881Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 05881Google Scholar

    [64]

    Hossain M I, Saleque A M, Ahmed S, Saidjafarzoda I, Shahiduzzaman M, Qarony W, Knipp D, Biyikli N, Tsang Y H 2021 Nano Energy 79 105400Google Scholar

    [65]

    Shao Y F, Zheng D X, Liu L, Liu J S, Du M Y, Peng L, Wang K, Liu S Z 2024 ACS Energy Lett. 9 4892Google Scholar

    [66]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [67]

    Werner J, Sahli F, Fu F, Leon D J J, Walter A, Kamino B A, Niesen B, Nicolay S, Jeangros Q, Ballif C 2018 ACS Energy Lett. 3 2052Google Scholar

    [68]

    Nejand A B, Ritzer D B, Hu H, Schackmar F, Moghadamzadeh S, Feeney T, Singh R, Laufer F, Schmager R, Azmi R, Kaiser M, Abzieher T, Gharibzadeh S, Ahlswede E, Lemmer U, Richards B S, Paetzold U W 2022 Nat. Energy 7 620Google Scholar

    [69]

    Choi Y J, Lim S Y, Park J H, Ji S G, Kim J Y 2023 ACS Energy Lett. 8 3141Google Scholar

    [70]

    Zhu Z J, Mao K T, Xu J X 2021 J. Energy Chem. 58 219Google Scholar

    [71]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [72]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-Toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280Google Scholar

    [73]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar

    [74]

    Isikgor F H, Maksudov T, Chang X, Adilbekva B, Ling Z H, Hadmojo W T, Lin Y B, Anthopoulos T D 2022 ACS Energy Lett. 7 4469Google Scholar

    [75]

    Mcmeekin D P, Mahesh S, Noel N K, Klug M T, Lim J C, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [76]

    Wang J K, Zardetto V, Datta K, Zhang D, Wienk M M, Janssen R A J 2020 Nat. Commun. 11 5254Google Scholar

    [77]

    Xiao K, Wen J, Han L, Lin R X, Gao Y, Gu S, Zang Y P, Nie Y F, Zhu J, Xu J, Tan H R 2020 ACS Energy Lett. 5 2819Google Scholar

    [78]

    Wang Z W, Zeng L W, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C W, Maxwell A, Ugur E, Reis R D, Cheng M, Yang G, Subedi B, Luo D Y, Hu J H, Wang J K, Teale S, Mahesh S, Wang S S, Hu S Y, Jung E D, Wei M Y, Park S M, Grater L, Aydin E, Song Z N, Podraza N J, Lu Z H, Huang J S, Dravid V P, Wolf D S, Yan Y F, Grätzel M, Kanatzidis M G, Sargent E H 2023 Nature 618 74Google Scholar

    [79]

    Wang J K, Zeng L W, Zhang D, Maxwell A, Chen H, Datta K, Caiazzo A, Remmerswaal W H M, Schipper N R M, Chen Z H, Ho K, Dasgupta A, Kusch G, Ollearo R, Bellini L, Hu S F, Wang Z W, Li C W, Teale S, Grater L, Chen B, Wienk M M, Oliver R A, Snaith H J, Janssen R A J, Sargent E H 2023 Nat. Energy 9 70Google Scholar

    [80]

    Zheng J H, Wang G L, Duan W Y, Mahmud M A, Yi H M, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar

    [81]

    Heydarian M, Heydarian M, Bett A J, Bivour M, Schindler F, Hermle M, Schubert M C, Schulze P S C, Borchert J, Glunz S W 2023 ACS Energy Lett. 8 4186Google Scholar

    [82]

    Xu F Z, Aydin E, Liu J, Ugur E, Harrison G T, Xu L J, Vishal B, Yildirim B K, Wang M C, Ali R, Subbiah A S, Yazmaciyan A, Zhumagali S, Yan W B, Gao Y J, Song Z M, Li C W, Fu S, Chen B, UR Rehman A U, Babics M, Razzaq A, Bastiani D M, Allen T G, Schwiingenschlögl U, Yan Y F, Lquai F, Sargent E H, Wolf S D 2024 Joule 8 224Google Scholar

    [83]

    Li F M, Wu D, Shang L, Xia R, Zhang H R, Huang Z X, Gong J, Mao L, Zhang H, SunY Q, Yang T, Sun X G, Feng Z Q, Liu M Z 2024 Adv. Mater. 36 2311595Google Scholar

    [84]

    Hu H, An S X, Li Y, Orooji S, Singh R, Schackmar F, Laufer F, Jin Q H, Feeney T, Diercks A, Gota F, Moghadamzadeh S, Pan T, Rienäcker M, Peibst R, Nejand B A, Paetzold U W 2024 Energy Environ. Sci. 17 2800Google Scholar

    [85]

    Liu S C, Lu Y, Yu C, Li J, Luo R J, Guo R, Liang H M, Jia X K, Guo X, Wang Y D, Zhou Q L, Wang X, Yang S F, Sui M L, Müller-Buschbaum P, Hou Y 2024 Nature 628 306Google Scholar

    [86]

    Guo Y X, Du S J, Hu X Z, Li G, Yu Z X, Guan H L, Wang S X, Jia P, Zhou H, Li C, Ke W J, Fang G J 2024 Nano Energy 126 109612Google Scholar

    [87]

    苏诗茜, 应智琴, 陈邢凯, 李鑫, 杨熹, 叶继春 2024 太阳能学报 45 23Google Scholar

    Su S Q, Ying Z Q, Chen X K, Li X, Yang X, Ye J C 2024 Acta Energiae Solaris Sin. 45 23Google Scholar

    [88]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [89]

    Yang H D, Chen W J, Yu Y, Shen Y X, Yang H Y, Li X Q, Zhang B, Chen H Y, Cheng Q R, Zhang Z C, Qin W, Chen J D, Tang J X, Li Y W, Li Y F 2023 Adv. Mater. 35 2208604Google Scholar

    [90]

    Eggimann H J, Patel J B, Johnston M B, Herz L M 2020 Nat. Commun. 11 5525Google Scholar

    [91]

    An S C, Chen P R, Hou F H, Wang Q, Pan H, Chen X L, Lu X N, Zhao Y, Huang Q, Zhang X D 2020 Solar Energy 196 409Google Scholar

    [92]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Ed. 62 e202216668Google Scholar

    [93]

    Luo X H, Wu T H, Wang Y B, Lin X S, Su H Z, Han Q F, Han L Y 2021 Sci. China Chem. 64 218Google Scholar

    [94]

    Reichmuth S K, Siefer G, Schachtner M, Mühleis M, Hohl-Ebinger J, Glunz S W 2020 IEEE J. Photovoltaics 10 1076Google Scholar

  • 图 1  (a) 三结叠层太阳电池光响应原理; (b) 三结钙钛矿基叠层太阳电池效率演变; (c) 三结钙钛矿基叠层太阳电池结构示意图

    Figure 1.  (a) Principle of light response of triple-junction tandem solar cells; (b) PCE evolution of triple-junction tandem solar cells; (c) schematic illustration of the triple-junction perovskite based tandem solar cells.

    图 2  (a) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的EQE曲线[6]; (b) 全钙钛矿叠层太阳电池的最大实际PCE为36.6%时的J-V曲线[6]; (c) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的EQE曲线[6]; (d) 钙钛矿/钙钛矿/硅叠层太阳电池的最大实际PCE为38.8%时的J-V曲线[6]

    Figure 2.  (a) EQE curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (b) J-V curves for an all-perovskite tandem solar cell with a maximum practical PCE of 36.6%[6]; (c) EQE curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6]; (d) J-V curves for a perovskite/perovskite/silicon solar cell with a maximum practical PCE of 38.8%[6].

    图 3  (a) 叠层太阳电池结构及横截面SEM图像[74]; (b) 子电池及叠层太阳电池J-V曲线[75]; (c) 全钙钛矿叠层太阳电池结构[77]; (d) 叠层太阳电池在暗态和光照下的J-V曲线[76]; (e) 钙钛矿前驱体结晶过程示意图[79]; (f) 钙钛矿的相偏析抑制机制示意图[78]

    Figure 3.  (a) Schematic structure of tandem solar cells and cross sectional SEM image[74]; (b) J-V curves of sub-cells and three-junction tandem solar cell[75]; (c) schematic structure of all perovskite triple-junction tandem solar cells[77]; (d) J-V curves of tandem solar cells in dark state and light[76]; (e) schematics of perovskite precursors during the crystallization process[79]; (f) schematic illustration of the suppression mechanism of light-induced phase segregation[78].

    图 4  (a) 叠层太阳电池结构及截面SEM图像[67]; (b) 叠层太阳电池结构及截面SEM图像[80]; (c) 性能最佳的叠层太阳电池J-V曲线, 插图为叠层太阳电池结构示意图[69]; (d) 反溶剂沉积方法和气淬技术制备的钙钛矿电池横截面SEM图像[81]

    Figure 4.  (a) Schematic structure of tandem solar cells and cross sectional SEM images[67]; (b) schematic structure of tandem solar cells and cross sectional SEM images[80]; (c) J-V curve of the champion tandem solar cell, illustrated with schematic structure of the tandem solar cell [69]; (d) cross sectional SEM image of perovskite cell prepared by anti-solvent dripping and gas quenching method[81].

    图 5  (a) 添加剂工程工作机理示意图[82]; (b) 宽带隙钙钛矿混合相和分离相示意图[83]; (c) 薄膜的XRD图[84]; (d) 经认证的叠层太阳电池J-V曲线[85]

    Figure 5.  (a) Schematic diagram of the working mechanism of additive engineering[82]; (b) illustration of the mixed-phase and segregated-phase of wide-bandgap perovskites[83]; (c) XRD pattern of film[84]; (d) certified tandem solar cells J-V curves[85].

    表 1  单节宽带隙钙钛矿太阳电池光伏性能汇总表

    Table 1.  Summary of photovoltaic performance of single wide-band gap perovskite solar cells.

    组分 禁带宽度/eV 开路电压/V 短路电流密度/(mA·cm–2) 填充 因子/% 能量转换效率/% Ref.
    Cs0.15MA0.15FA0.70Pb(I0.15Br0.85)3 2.05 1.27 9.4 70.4 8.4 [74]
    FA0.83Cs0.17Pb(Br0.7I0.3)3 1.94 1.28 11.9 76.0 11.6 [75]
    Cs0.2FA0.8PbI0.9Br2.1 1.73 1.07 9.9 76.0 8.1 [76]
    Cs0.2FA0.8PbI0.9Br2.1 1.99 1.262 11.2 73.5 10.4 [77]
    Rb0.15Cs0.85PbI1.75Br1.25 2.0 1.30 12.4 84.7 13.6 [78]
    Cs0.15FA0.85Pb(I0.4Br0.6)3 1.97 1.44 12.8 83.0 15.3 [79]
    CsFAPbIBr 1.8 \ \ \ \ [67]
    Cs0.2FA0.8Pb(I0.45Br0.55)3 1.90 1.09 11.7 71 9.1 [80]
    MAPb(I0.5Br0.35Cl0.15)3 1.96 1.28 14.16 76.6 13.88 [69]
    Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 1.83 1.12 13.6 74.6 11.3 [81]
    Cs0.1FA0.9PbBr2.1I0.9 1.98 1.38 14.0 76.6 15.0 [82]
    Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 1.98 1.33 13.05 76.7 13.4 [83]
    FA0.8Cs0.2Pb(I0.5Br0.5)3 1.84 1.27 16.4 77.0 16.0 [84]
    FA0.60MA0.15Cs0.25Pb(I0.45Br0.5OCN0.05)3 1.93 1.422 14.18 83.79 16.9 [85]
    DownLoad: CSV

    表 2  单片三结钙钛矿基叠层太阳电池光伏性能汇总表

    Table 2.  Summaries for PV performance of monolithic triple-junction perovskite-based tandem solar cells.

    类型 宽带隙 中间带隙 窄带隙 开路电压/V 短路电流密度/(mA·cm–2) 填充因子/% 正扫/反扫效率/% 认证效率/% 面积/cm2 Ref.
    钙钛矿/钙钛矿/有机 Cs0.15MA0.15FA0.70Pb (I0.15Br0.85)3 (2.05 eV) Cs0.15MA0.15FA0.70Pb (I0.85Br0.15)3 (1.62 eV) PM6:BTP-eC9:PCBM (1.33 eV) 3.03 9.1 70.4 19.4 \ 0.1 [74]
    \ \ \ 19.2
    钙钛矿/钙钛矿/钙钛矿 FA0.83Cs0.17Pb(Br0.7I0.3)3 (1.94 eV) MAPbI3 (1.57 eV) MAPb0.75Sn0.25I3 (1.34 eV) 2.7 8.3 0.43 6.7 \ 0.092 [75]
    \ \ \ \
    Cs0.1(FA0.66MA0.34)0.9PbI2Br (1.73 eV) FA0.66MA0.34PbI2.85Br0.15 (1.57 eV) FA0.66MA0.34Pb0.5Sn0.5I3 (1.23eV) 2.78 7.4 81 17.3 \ 0.067 [76]
    2.78 7.42 82 17.0
    Cs0.2FA0.8PbI0.9Br2.1 (1.99 eV) Cs0.05FA0.95PbI2.55Br0.45 (1.60 eV) MA0.3FA0.7Pb0.5Sn0.5I3 (1.22 eV) 2.80 8.8 81 20.1 \ 0.049 [77]
    2.793 8.8 80.7 19.9
    Rb0.15Cs0.85PbI1.75Br1.25 (2.0 eV) Cs0.05FA0.9MA0.05Pb (I0.9Br0.1)3 (1.60 eV) Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3-0.05SnF2 (1.22 eV) 3.215 9.71 77.93 24.33 23.29 0.049 [78]
    3.210 9.63 78.67 24.32
    Cs0.15FA0.85Pb(I0.4Br0.6)3 (1.97 eV) Cs0.05FA0.9MA0.05Pb (I0.85Br0.15)3 (1.77 eV) Cs0.05FA0.7MA0.25 Pb0.5Sn0.5I3 (1.22 eV) 3.33 9.7 78 25.1 23.87 0.049 [79]
    \ \ \ \
    钙钛矿/钙钛矿/硅 CsFAPbIBr (1.8 eV) CsFAPbIBr (1.53 eV) Si (1.10 eV) 2.688 7.7 68.0 14.0 \ 1.42 [67]
    2.692 7.7 58.7 12.1
    Cs0.2FA0.8Pb(I0.45Br0.55)3 (1.90 eV) Cs0.1FA0.9PbI3 (1.55 eV) Si (1.10 eV) 2.74 8.54 86.0 20.1 \ 1.03 [80]
    \ \ \ \
    MAPb(I0.5Br0.35Cl0.15)3 (1.96 eV) Cs0.2MA0.05FA0.75PbI3 (1.56 eV) Si (1.10 eV) 2.78 10.18 78.60 22.23 \ 0.1875 [69]
    2.78 10.19 76.90 21.79
    Cs0.05(FA0.55MA0.45)0.95Pb(I0.55Br0.45)3 (1.83 eV) Cs0.05(FA0.9MA0.1)0.95Pb (I0.95Br0.05)3 (1.56 eV) Si (1.10 eV) 2.87 8.9 78.1 20.1 \ 1.0 [81]
    2.86 8.9 77.9 20.0
    Cs0.1FA0.9PbBr2.1I0.9 (1.98 eV) Rb0.05Cs0.1FA0.85PbI3 (1.52 eV) Si (1.10 eV) 3.04 11.9 72.9 26.4 \ 1.0 [82]
    3.01 11.9 71.1 25.5
    Rb0.05Cs0.12FA0.83PbI0.95Cl0.05Br2 (1.98 eV) Cs0.05(FA0.98MA0.02)0.95Pb (I0.98Br0.02)3 (1.55 eV) Si (1.10 eV) 2.995 11.76 70.80 25.0 24.19 1.04 [83]
    2.980 11.73 68.4 23.9
    FA0.8Cs0.2Pb(I0.5Br0.5)3 (1.84 eV) FAPbI3 (1.52 eV) Si (1.10 eV) 2.84 11.6 0.74 24.4 \ 1.0 [84]
    2.86 11.5 0.73 24.0
    FA0.60MA0.15Cs0.25Pb (I0.45Br0.5OCN0.05)3 (1.93 eV) FA0.9Cs0.1PbI3 (1.55 eV) Si (1.10 eV) 3.132 11.58 76.15 27.62 27.1 1.0 [85]
    \ \ \ \
    DownLoad: CSV
  • [1]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [2]

    Luo X H, Liu X, Lin X S, Wu T H, Wang Y B, Han Q F, Wu Y Z, Segawa H, Han L Y 2024 ACS Energy Lett. 9 1487Google Scholar

    [3]

    Liao J F, Wu W Q, Jiang Y, Zhong J X, Wang L Z, Kuang D B 2020 Chem. Soc. Rev. 49 354Google Scholar

    [4]

    NREL, Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10]

    [5]

    Meier J, Flückiger R, Keppner H, Shah A 1994 Appl. Phys. Lett. 65 860Google Scholar

    [6]

    Hörantner M T, Leijtens T, Ziffer M E, Eperon G E, Christoforo M G, Mcgehee M D, Snaith H J 2017 ACS Energy Lett. 2 2506Google Scholar

    [7]

    Wang Y, Ye S Y, Lim J W M, Giovanni D, Feng M J, Fu J H, Krishnamoorthy H N S, Zhang Q N, Xu Q, Cai R, Sum T C 2023 Nat. Commun. 14 6293Google Scholar

    [8]

    Marchat C, Williams R M 2024 Photochem. Photobiol. Sci. 23 1Google Scholar

    [9]

    Bremner S P, Levy M Y, Honsberg C B 2008 Prog. Photovoltaics 16 225Google Scholar

    [10]

    Yang J M, Bao Q Y, Shen L, Ding L M 2020 Nano energy 76 105019Google Scholar

    [11]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar

    [12]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [13]

    Yeom K M, Kim S U, Woo M Y, Noh J H, Im S H 2020 Adv. Mater. 32 2002228Google Scholar

    [14]

    张云龙, 陈新亮, 周忠信, 赵颖, 张晓丹 2021 太阳能学报 42 49Google Scholar

    Zhang Y L, Chen X L, Zhou Z X, Zhao Y, Zhang X D 2021 Acta Energiae Solaris Sin. 42 49Google Scholar

    [15]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124 109476Google Scholar

    [16]

    Zhang Z C, Chen W J, Jiang X X, Cao J L, Yang H D, Chen H Y, Yang F, Shen Y X, Yang H Y, Cheng Q R, Chen X N, Tang X H, Kang S Q, Ou X M, Brabec C J, Li Y W, Li Y F 2024 Nat. Energy 9 592Google Scholar

    [17]

    Wang X, Zhang D, Liu B Z, Wu X, Jiang X F, Zhang S F, Wang Y, Gao D P, Wang L N, Wang H L, Huang Z M, Xie X F, Chen T, Xiao Z G, He Q Y, Xiao S, Zhu Z L, Yang S F 2023 Adv. Mater. 35 2305946Google Scholar

    [18]

    Shen H P, Walter D, Wu Y L, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R 2020 Adv. Energy Mater. 10 1902840Google Scholar

    [19]

    Bastiani M D, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, IsikgorS F H, Liu J, Xu L J, Chen B, Kerschaver E V, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar

    [20]

    Shi Y T, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [21]

    Zhang H, Park N G 2024 DeCarbon 3 100025Google Scholar

    [22]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, Mcgehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [23]

    Martinho F 2021 Energy Environ. Sci. 14 3840Google Scholar

    [24]

    Cheng Y H, Ding L M 2021 SusMat 1 324Google Scholar

    [25]

    Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W, Dimroth F 2009 Appl. Phys. Lett. 94 223504Google Scholar

    [26]

    Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N Z, Mo D, Zhang Y Z, He F 2020 Joule 4 688Google Scholar

    [27]

    Zhang Z H, Li Z C, Meng L Y, Lien S Y, Gao P 2020 Adv. Funct. Mater. 30 2001904Google Scholar

    [28]

    Tong J H, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2021 ACS Energy Lett. 6 232Google Scholar

    [29]

    Montecucco R, Quadrivi E, Po R, Grancini G 2021 Adv. Energy Mater. 11 2100672Google Scholar

    [30]

    Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar

    [31]

    Huang T Y, Tan S, Nuryyeva S, Yavuz I, Babbe F, Zhao Y P, Abdelsamie M, Weber M H, Wang R, Houk K N , Sutter-Fella C M, Yang Y 2021 Sci. Adv. 7 eabj1799Google Scholar

    [32]

    Correa-Baena J P, Lou Y Q, Brenner T M, Snaider J, Sun S, Li X Y, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [33]

    Enkhbayar E, Otgontamir N, Kim S Y, Lee J, Kim J H 2024 ACS Appl. Mater. Interfaces 16 35084Google Scholar

    [34]

    Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D 2019 Energy Environ. Sci. 12 2778Google Scholar

    [35]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [36]

    Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite A D 2023 Chem. Rev. 123 9565Google Scholar

    [37]

    Li X, Aftab S, Abbas A, Hussain S, Aslam M, Kabir F, Abd-Rabboh H S M, Hegazy H H, Xu F, Ansari M Z 2023 Nano Energy 118 108979Google Scholar

    [38]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [39]

    Dong Z J, Li W P, Wang H L, Jiang X Y, Liu H C, Zhu L Q, Chen H N 2021 Solar RRL 5 2100370Google Scholar

    [40]

    Kerner R A, Xu Z J, Larson B W, Rand B P 2021 Joule 5 2273Google Scholar

    [41]

    Xu J X, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest M F A M, Berry J J, Luther J M, Holman Z C, McGehee M D 2020 Science 367 1097Google Scholar

    [42]

    李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗 2024 太阳能学报 45 30Google Scholar

    Li Z X, Feng X Z, Chen X G, Liu X P, Dai S Y, Cai M L 2024 Acta Energiae Solaris Sin. 45 30Google Scholar

    [43]

    Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar

    [44]

    Walsh A 2015 J. Phys. Chem. C 119 5755Google Scholar

    [45]

    Sala J, Heydarian M, Lammar S, Abdulraheem Y, Aernouts T, Hadipour A, Poortmans J 2021 ACS Appl. Energy Mater. 4 6377Google Scholar

    [46]

    Reza K M, Gurung A, Bahrami B, Chowdhury A H, Ghimire N, Pathak R, Rahman S I, Laskar M A R, Chen K, Bobba R S, Lamsal B S, Biswas L K, Zhou Y, Logue B, Qiao Q 2021 Solar RRL 5 2000740Google Scholar

    [47]

    Zhang S Y, Tang M C, Fan Y Y, Li R P, Nguyen N V, Zhao K, Anthopoulos T D, Hacker C A 2020 ACS Appl. Mater. Interfaces 12 34402Google Scholar

    [48]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidamiinov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar

    [49]

    Jiang Q, Tong J H, Scheidt R A, Wang X M, L ouks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y F, Zhu K 2022 Science 378 1295Google Scholar

    [50]

    Jaysankar M, Qiu W, Bastos J, Tait J G, Debucquoy M, Paetzold U W, Cheyns D, Poortmans J 2016 J. Mater. Chem. A 4 10524Google Scholar

    [51]

    Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y H, Mccarthy M M, Unger E, Getautis V, Widmer-Cooper A, Herz L M, Snaith H J 2023 Adv. Mater. 35 2211742Google Scholar

    [52]

    An Y D, Zhang N, Zeng Z X, Cai Y T, Jiang W L, Qi F, Ke L Y, Lin F R, Tsang S W, Shi T T, Jen A K Y, Yip H L 2024 Adv. Mater. 36 2306568Google Scholar

    [53]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [54]

    Kim D H, Muzzillo C P, Tong J H, Palmstrom A F, Larson B W, Choi C, Harvey S P, Glynn S, Whitaker J B, Zhang F, Li Z, Lu H P, Van Hest M F A M, Berry J J, Mansfield L M, Huang Y, Yan Y F, Zhu K 2019 Joule 3 1734Google Scholar

    [55]

    Thiesbrummel J, Peña-Camargo F, Brinkmann K O, Gutierrez-Partida E, Yang F J, Warby J, Albrecht S, Neher D, Riedl T, Snaith H J, Stolterfoht M, Lang F 2023 Adv. Energy Mater. 13 2202674Google Scholar

    [56]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [57]

    Chen J B, Wang D, Chen S, Hu H, Li Y, Huang Y L, Zhang Z Q, Jiang Z Y, Xu J M, Sun X Y, So S K, Peng Y J, Wang X Z, Zhu X J, Xu B M 2022 ACS Appl. Mater. Interfaces 14 43246Google Scholar

    [58]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A U, Van Kerschaver E, Baran D, Mcculloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, Wolf S D 2021 Joule 5 1566Google Scholar

    [59]

    Yu Y, Liu R, Liu C, Shi X L, Yu H, Chen Z G 2022 Adv. Energy Mater. 12 2201509Google Scholar

    [60]

    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F, Mcgehee M D 2018 ACS Energy Lett. 3 2694Google Scholar

    [61]

    Caprioglio P, Smith J A, Oliver R D J, Dasgupta A, Choudhary S, Farrar M D, Ramadan A J, Lin Y H, Greyson Christoforo M, Ball J M, Diekmann J, Thiesbrummel J, Zaininger K A, Shen X Y, Johnston M B, Neher D, Stolterfoht M, Snaith H J 2023 Nat. Commun. 14 932Google Scholar

    [62]

    Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J 2016 Science 354 861Google Scholar

    [63]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 05881Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 05881Google Scholar

    [64]

    Hossain M I, Saleque A M, Ahmed S, Saidjafarzoda I, Shahiduzzaman M, Qarony W, Knipp D, Biyikli N, Tsang Y H 2021 Nano Energy 79 105400Google Scholar

    [65]

    Shao Y F, Zheng D X, Liu L, Liu J S, Du M Y, Peng L, Wang K, Liu S Z 2024 ACS Energy Lett. 9 4892Google Scholar

    [66]

    Li H, Zhang W 2020 Chem. Rev. 120 9835Google Scholar

    [67]

    Werner J, Sahli F, Fu F, Leon D J J, Walter A, Kamino B A, Niesen B, Nicolay S, Jeangros Q, Ballif C 2018 ACS Energy Lett. 3 2052Google Scholar

    [68]

    Nejand A B, Ritzer D B, Hu H, Schackmar F, Moghadamzadeh S, Feeney T, Singh R, Laufer F, Schmager R, Azmi R, Kaiser M, Abzieher T, Gharibzadeh S, Ahlswede E, Lemmer U, Richards B S, Paetzold U W 2022 Nat. Energy 7 620Google Scholar

    [69]

    Choi Y J, Lim S Y, Park J H, Ji S G, Kim J Y 2023 ACS Energy Lett. 8 3141Google Scholar

    [70]

    Zhu Z J, Mao K T, Xu J X 2021 J. Energy Chem. 58 219Google Scholar

    [71]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [72]

    Brinkmann K O, Becker T, Zimmermann F, Kreusel C, Gahlmann T, Theisen M, Haeger T, Olthof S, Tückmantel C, Günster M, Maschwitz T, Göbelsamnn F, Koch C, Hertel D, Caprioglio P, PeñA-Camargo F, Perdigón-Toro L, Al-Ashouri A, Merten L, Hinderhofer A, Gomell L, Zhang S, Schreiber F, Albrecht S, Meerholz K, Neher D, Stolterfoht M, Riedl T 2022 Nature 604 280Google Scholar

    [73]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 1 0095Google Scholar

    [74]

    Isikgor F H, Maksudov T, Chang X, Adilbekva B, Ling Z H, Hadmojo W T, Lin Y B, Anthopoulos T D 2022 ACS Energy Lett. 7 4469Google Scholar

    [75]

    Mcmeekin D P, Mahesh S, Noel N K, Klug M T, Lim J C, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [76]

    Wang J K, Zardetto V, Datta K, Zhang D, Wienk M M, Janssen R A J 2020 Nat. Commun. 11 5254Google Scholar

    [77]

    Xiao K, Wen J, Han L, Lin R X, Gao Y, Gu S, Zang Y P, Nie Y F, Zhu J, Xu J, Tan H R 2020 ACS Energy Lett. 5 2819Google Scholar

    [78]

    Wang Z W, Zeng L W, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C W, Maxwell A, Ugur E, Reis R D, Cheng M, Yang G, Subedi B, Luo D Y, Hu J H, Wang J K, Teale S, Mahesh S, Wang S S, Hu S Y, Jung E D, Wei M Y, Park S M, Grater L, Aydin E, Song Z N, Podraza N J, Lu Z H, Huang J S, Dravid V P, Wolf D S, Yan Y F, Grätzel M, Kanatzidis M G, Sargent E H 2023 Nature 618 74Google Scholar

    [79]

    Wang J K, Zeng L W, Zhang D, Maxwell A, Chen H, Datta K, Caiazzo A, Remmerswaal W H M, Schipper N R M, Chen Z H, Ho K, Dasgupta A, Kusch G, Ollearo R, Bellini L, Hu S F, Wang Z W, Li C W, Teale S, Grater L, Chen B, Wienk M M, Oliver R A, Snaith H J, Janssen R A J, Sargent E H 2023 Nat. Energy 9 70Google Scholar

    [80]

    Zheng J H, Wang G L, Duan W Y, Mahmud M A, Yi H M, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar

    [81]

    Heydarian M, Heydarian M, Bett A J, Bivour M, Schindler F, Hermle M, Schubert M C, Schulze P S C, Borchert J, Glunz S W 2023 ACS Energy Lett. 8 4186Google Scholar

    [82]

    Xu F Z, Aydin E, Liu J, Ugur E, Harrison G T, Xu L J, Vishal B, Yildirim B K, Wang M C, Ali R, Subbiah A S, Yazmaciyan A, Zhumagali S, Yan W B, Gao Y J, Song Z M, Li C W, Fu S, Chen B, UR Rehman A U, Babics M, Razzaq A, Bastiani D M, Allen T G, Schwiingenschlögl U, Yan Y F, Lquai F, Sargent E H, Wolf S D 2024 Joule 8 224Google Scholar

    [83]

    Li F M, Wu D, Shang L, Xia R, Zhang H R, Huang Z X, Gong J, Mao L, Zhang H, SunY Q, Yang T, Sun X G, Feng Z Q, Liu M Z 2024 Adv. Mater. 36 2311595Google Scholar

    [84]

    Hu H, An S X, Li Y, Orooji S, Singh R, Schackmar F, Laufer F, Jin Q H, Feeney T, Diercks A, Gota F, Moghadamzadeh S, Pan T, Rienäcker M, Peibst R, Nejand B A, Paetzold U W 2024 Energy Environ. Sci. 17 2800Google Scholar

    [85]

    Liu S C, Lu Y, Yu C, Li J, Luo R J, Guo R, Liang H M, Jia X K, Guo X, Wang Y D, Zhou Q L, Wang X, Yang S F, Sui M L, Müller-Buschbaum P, Hou Y 2024 Nature 628 306Google Scholar

    [86]

    Guo Y X, Du S J, Hu X Z, Li G, Yu Z X, Guan H L, Wang S X, Jia P, Zhou H, Li C, Ke W J, Fang G J 2024 Nano Energy 126 109612Google Scholar

    [87]

    苏诗茜, 应智琴, 陈邢凯, 李鑫, 杨熹, 叶继春 2024 太阳能学报 45 23Google Scholar

    Su S Q, Ying Z Q, Chen X K, Li X, Yang X, Ye J C 2024 Acta Energiae Solaris Sin. 45 23Google Scholar

    [88]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [89]

    Yang H D, Chen W J, Yu Y, Shen Y X, Yang H Y, Li X Q, Zhang B, Chen H Y, Cheng Q R, Zhang Z C, Qin W, Chen J D, Tang J X, Li Y W, Li Y F 2023 Adv. Mater. 35 2208604Google Scholar

    [90]

    Eggimann H J, Patel J B, Johnston M B, Herz L M 2020 Nat. Commun. 11 5525Google Scholar

    [91]

    An S C, Chen P R, Hou F H, Wang Q, Pan H, Chen X L, Lu X N, Zhao Y, Huang Q, Zhang X D 2020 Solar Energy 196 409Google Scholar

    [92]

    Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Ed. 62 e202216668Google Scholar

    [93]

    Luo X H, Wu T H, Wang Y B, Lin X S, Su H Z, Han Q F, Han L Y 2021 Sci. China Chem. 64 218Google Scholar

    [94]

    Reichmuth S K, Siefer G, Schachtner M, Mühleis M, Hohl-Ebinger J, Glunz S W 2020 IEEE J. Photovoltaics 10 1076Google Scholar

  • [1] Yang Jing, Han Xiao-Jing, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Xu Sheng-Zhi, Zhao Ying, Zhang Xiao-Dan. Preparation of wide-bandgap perovskite thin films by propylamine hydrochloride assisted gas quenching method. Acta Physica Sinica, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [2] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [4] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [5] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [6] Pan Hong-Ying, Quan Zhi-Jue. Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells. Acta Physica Sinica, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [7] Chen Liang, Zhang Li-Wei, Chen Yong-Sheng. Progress in Pb-free and less-Pb organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [8] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [9] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [10] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [11] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [12] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [13] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [14] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] Yu Huang-Zhong. Progress in the blend stacked structure of organic solar cells. Acta Physica Sinica, 2013, 62(2): 027201. doi: 10.7498/aps.62.027201
    [16] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [17] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [18] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
Metrics
  • Abstract views:  2611
  • PDF Downloads:  129
Publishing process
  • Received Date:  26 August 2024
  • Accepted Date:  30 October 2024
  • Available Online:  13 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回