Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries

HU Junping LIANG Sisi DUAN Huixian TIAN Juncheng CHEN Shuo DAI Boyang HUANG Chunlai LIU Yu LYU Ying WAN Lijia OUYANG Chuying

Citation:

Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries

HU Junping, LIANG Sisi, DUAN Huixian, TIAN Juncheng, CHEN Shuo, DAI Boyang, HUANG Chunlai, LIU Yu, LYU Ying, WAN Lijia, OUYANG Chuying
cstr: 32037.14.aps.74.20241461
PDF
HTML
Get Citation
  • Reasonably designing high-capacity novel electrode materials is key to further enhancing the energy density of ion batteries. Graphene has been considered one of the most promising candidates for anodes in ion batteries. However, the weak interaction between pure graphene and the corresponding ions results in a low theoretical capacity. Based on this, in this work the first-principles calculation is used to assess the viability of two-dimensional Cu/NO2G, a single-atom copper-doped graphene anchored by nitrogen and oxygen, as an anode material for Li/Na/K-ion batteries. The results show that Cu/NO2G is stable in terms of thermodynamics and kinetics. It maintains good conductivity before and after the adsorption of Li/Na/K, with theoretical capacities of 1639.9 mAh/g for lithium, 2025.8 mAh/g for sodium, and 1157.6 mAh/g for potassium. In the embedding process of Li/Na/K, the lattice constant changes minimally (less than 1%), indicating excellent cycling stability. Additionally, the migration energy barriers for Li, Na, and K on the surface of Cu/NO2G are 0.339 eV, 0.209 eV, and 0.098 eV, respectively, demonstrating its superior rate performance. In summary, these results provide a solid theoretical foundation for rationally designing metal single-atom doped graphene as a novel anode material for alkali metal ion batteries. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00063.
      Corresponding author: HU Junping, jphu@nit.edu.cn ; OUYANG Chuying, cyouyang@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12264029) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20242BAB25033).
    [1]

    Liu A, Chen Y T, Cheng X 2022 Environ. Res. Lett. 17 054031Google Scholar

    [2]

    陈海生, 刘畅, 徐玉杰, 岳芬, 刘为, 俞振华 2021 储能科学与技术 10 1477Google Scholar

    Chen H S, Liu C, Xu Y J, Yue F, Liu W, Yu Z H 2021 Energy Storage Sci. Technol. 10 1477Google Scholar

    [3]

    Nzereogu P U, Omah A D, Ezema F I, Iwuoha E I, Nwanya A C 2022 Appl. Surf. Sci. Adv. 9 100233Google Scholar

    [4]

    Hossain M H, Chowdhury M A, Hossain N, Islam M A, Mobarak M H 2023 Chem. Eng. J. Adv. 16 100569Google Scholar

    [5]

    Guo Q B, Han S, Lu Y X, Chen L Q, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar

    [6]

    Jian Z L, Luo W, Ji X L 2015 J. Am. Chem. Soc. 137 11566Google Scholar

    [7]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renew. Sustain. Energy Rev. 119 109549Google Scholar

    [8]

    Sha M, Liu L, Zhao H P, Lei Y 2020 Carbon Energy 2 350Google Scholar

    [9]

    Aslam M K, Niu Y, Xu M 2021 Adv. Energy Mater. 11 2000681Google Scholar

    [10]

    Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S 2014 Nat. Commun. 5 4033Google Scholar

    [11]

    Tan S H, Yang H, Zhang Z, Xu X Y, Xu Y Y, Zhou J, Zhou X C, Pan Z D, Rao X Y, Gu Y D, Wang Z L, Wu Y T, Liu X, Zhang Y 2023 Molecules 28 3134Google Scholar

    [12]

    Lu X Y, Peng H D, Liu G P, Qi F Y, Shi C L, Wu S, Wu Y X, Yang H P, Shan J, Sun Z P 2023 Energy Adv. 2 1294Google Scholar

    [13]

    Kuai J, Xie J, Wang J D, Chen J Y, Liu F, Xu X W, Tu J, Cheng J P 2024 Chem. Phys. Lett. 842 141214Google Scholar

    [14]

    Zhang K, He Q, Xiong F Y, Zhou J P, Zhao Y, Mai L Q, Zhang L N 2020 Nano Energy 77 105018Google Scholar

    [15]

    Lei K X, Wang J, Chen C, Li S Y, Wang S W, Zheng S J, Li F J 2020 Rare Met. 39 989Google Scholar

    [16]

    Feng Z Y, Peng W J, Wang Z X, Guo H J, Li X H, Yan G C, Wang J X 2021 Int. J. Miner. Metall. Mater. 28 1549Google Scholar

    [17]

    Garayt M D L, Zhang L B, Zhang Y X, Obialor M C, Deshmukh J, Xing Y J, Yang C Y, Metzger M, Dahn J R 2024 J. Electrochem. Soc. 171 070523Google Scholar

    [18]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wires Comput. Mol. Sci. 10 e1473Google Scholar

    [19]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [20]

    Hu J P, Xu B, Ouyang C Y, Yang S Y A, Yao Y G 2014 J. Phys. Chem. C 118 24274Google Scholar

    [21]

    Xu Z M, Lv X J, Chen J G, Jiang L X, Lai Y Q, Li J 2017 Phys. Chem. Chem. Phys. 19 7807Google Scholar

    [22]

    Yu Y D, Guo Z L, Peng Q, Zhou J, Sun Z M 2019 J. Mater. Chem. A 7 12145Google Scholar

    [23]

    Yu T, Zhang S T, Li F, Zhao Z Y, Liu L L, Xu H Y, Yang G C 2017 J. Mater. Chem. A 5 18698Google Scholar

    [24]

    张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜 2022 物理学报 71 066501Google Scholar

    Zhang G, Xie H M, Song H B, Li X F, Zhang Q, Kang Y L 2022 Acta Phys. Sin. 71 066501Google Scholar

    [25]

    雷雪玲, 朱巨湧, 柯强, 欧阳楚英 2024 物理学报 73 098804Google Scholar

    Lei X L, Zhu J Y, Ke Q, Ouyang C Y 2024 Acta Phys. Sin. 73 098804Google Scholar

    [26]

    Liang Y B, Liu Z, Wang J, Liu Y 2022 Chin. Phys. B 31 116302Google Scholar

    [27]

    Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R 2021 Ceram. Int. 47 22269Google Scholar

    [28]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374Google Scholar

    [29]

    Bi J X, Du Z Z, Sun J M, Liu Y H, Wang K, Du H F, Ai W, Huang W 2023 Adv. Mater. 35 2210734Google Scholar

    [30]

    Fan X, Zheng W T, Kuo J L, Singh D J 2013 ACS Appl. Mater. Interfaces 5 7793Google Scholar

    [31]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014 J. Phys. Chem. Lett. 5 1225Google Scholar

    [32]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010 Nano Lett. 10 3386Google Scholar

    [33]

    Ferrighi L, Trioni M I, Di Valentin C D 2015 J. Phys. Chem. C 119 6056Google Scholar

    [34]

    Lee H, Paeng K, Kim I S 2018 Synth. Met. 244 36Google Scholar

    [35]

    Datta D, Li J, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 1788Google Scholar

    [36]

    Ma L B, Lv Y H, Wu J X, Xia C, Kang Q, Zhang Y Z, Liang H F, Jin Z 2021 Nano Res. 14 4442Google Scholar

    [37]

    Share K, Cohn A P, Carter R, Rogers B, Pint C L 2016 ACS Nano 10 9738Google Scholar

    [38]

    Ma C C, Shao X H, Cao D P 2012 J. Mater. Chem. 22 8911Google Scholar

    [39]

    Cai D D, Wang C S, Shi C Y, Tan N 2018 J. Alloys Compd. 731 235Google Scholar

    [40]

    Denis P A 2024 J. Mol. Model. 30 96Google Scholar

    [41]

    Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y, Duan X F 2019 Chem. Soc. Rev. 48 5207Google Scholar

    [42]

    Xiao R, Yu T, Yang S, Chen K, Li Z N, Liu Z B, Hu T Z, Hu G J, Li J, Cheng H M, Sun Z H, Li F 2022 Energy Storage Mater. 51 890Google Scholar

    [43]

    Kresse G 1995 J. Non-Cryst. Solids 192–193 222Google Scholar

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [45]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [47]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [48]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [49]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [50]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [51]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [52]

    Khan M I, Nadeem G, Majid A, Shakil M 2021 Mater. Sci. Eng. B 266 115061Google Scholar

    [53]

    Li Y F, Jiang J Z, Li X F, Li M, Zheng Y J, Sun K 2024 Phys. Rev. B 110 155401Google Scholar

    [54]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [55]

    Li P, Li Z Y, Yang J L 2018 J. Phys. Chem. Lett. 9 4852Google Scholar

    [56]

    Lei S F, Chen X F, Xiao B B, Zhang W T, Liu J 2019 ACS Appl. Mater. Interfaces 11 28830Google Scholar

    [57]

    Yang M R, Kong F, Chen L, Tian B W, Guo J 2023 Thin Solid Films 769 139734Google Scholar

    [58]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672Google Scholar

    [59]

    Lin H, Liu G J, Zhu L L, Zhang Z J, Jin R C, Huang Y, Gao S M 2021 Appl. Surf. Sci. 544 148895Google Scholar

    [60]

    Wang Y N, Li Y S 2020 J. Mater. Chem. A 8 4274Google Scholar

    [61]

    Wang Y T, Zhou M, Xu L C, Zhao W T, Li R, Yang Z, Liu R P, Li X Y 2020 J. Power Sources 451 227791Google Scholar

    [62]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [63]

    Mukherjee S, Kavalsky L, Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630Google Scholar

    [64]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016 J. Mater. Chem. A 4 15224Google Scholar

    [65]

    Ahmad S, Din H U, Nguyen C Q, Nguyen S T, Nguyen C 2024 Dalton. Trans. 53 3785Google Scholar

    [66]

    Sannyal A, Zhang Z Q, Gao X F, Jang J 2018 Comput. Mater. Sci. 154 204Google Scholar

    [67]

    Liu M, Cheng Z S, Zhang X M, Li Y F, Jin L, Liu C, Dai X F, Liu Y, Wang X T, Liu G D 2023 Chin. Phys. B 32 096303Google Scholar

    [68]

    Fan K, Ying Y R, Li X, Luo X Y, Huang H T 2019 J. Phys. Chem. C 123 18207Google Scholar

    [69]

    Wang Y, Liang S S, Tian J C, Duan H X, Lv Y, Wan L J, Huang C L, Wu M S, Ouyang C Y, Hu J P 2024 Phys. Chem. Chem. Phys. 26 4455Google Scholar

    [70]

    Li F, Qu Y Y, Zhao M W 2016 J. Mater. Chem. A 4 8905Google Scholar

    [71]

    Samad A, Shafique A, Shin Y H 2017 Nanotechnology 28 175401Google Scholar

    [72]

    Yang Z F, Zheng Y P, Li W L, Zhang J P 2021 Nanoscale 13 11534Google Scholar

    [73]

    Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173Google Scholar

    [74]

    Jing Y, Liu J, Zhou Z P, Zhang J, Li Y 2019 J. Phys. Chem. C 123 26803Google Scholar

    [75]

    Hu J P, Xu B, Ouyang C Y, Zhang Y, Yang S A 2016 RSC Adv. 6 27467Google Scholar

    [76]

    Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J. Mater. Chem. A 5 21370Google Scholar

    [77]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754Google Scholar

  • 图 1  (a) 结构优化后Cu/NO2G的俯视图; (b) 结构优化后Cu/NO2G的侧视图; (c) Cu/NO2G单层的声子色散曲线; (d) 300 K下AIMD模拟的结果, 插图为5 ps和10 ps时的原子结构俯视图

    Figure 1.  (a) Top view of the optimized Cu/NO2G; (b) side view of the optimized Cu/NO2G; (c) phonon dispersion curves of Cu/NO2G monolayer; (d) results of AIMD simulations at 300 K, where insets are snapshots of atomic structures at 5 ps and 10 ps.

    图 2  (a) Cu/NO2G上A面和B面所考虑的吸附位点俯视图; (b)—(d)分别为Li/Na/K在A面最稳定的吸附构型的俯视图和侧视图; (e)—(g) 分别为Li/Na/K在B面最稳定的吸附构型的俯视图和侧视图

    Figure 2.  (a) Top view of adsorption sites considered on side A and side B of Cu/NO2G; (b)–(d) the top and side views of the most stable adsorption configurations of Li/Na/K on the A side; (e)–(g) the top and side views of the most stable adsorption configurations of Li/Na/K on the B side.

    图 3  (a) Li, (b) Na, (c) K吸附在Cu/NO2G的B面上的电荷密度差的侧视图, 蓝色和黄色分别代表电子耗尽区和积累区, 相应的等值面(isosurface level)的数值为0.0015 Bohr–3

    Figure 3.  Side views of the charge density difference of (a) Li, (b) Na and (c) K atom adsorbed on B side of Cu/NO2G. The blue and the yellow colors represent regions with electron depletion and accumulation, respectively. The corresponding value of isosurface level is 0.0015 Bohr–3.

    图 4  (a) Cu/NO2G态密度图; (b) Cu/NO2G 中C和Cu的局部态密度图; (c) Cu/NO2G 中N和O的局部态密度图; (d) Cu/NO2G吸附Li原子后态密度图; (e) Cu/NO2G吸附Na原子后态密度图; (f) Cu/NO2G吸附K原子后态密度图

    Figure 4.  (a) DOS of Cu/NO2G; (b) LDOS plots for C and Cu in Cu/NO2G; (c) LDOS plots for N and O in Cu/NO2G; (d) DOS of Cu/NO2G after Li adsorption; (e) DOS of Cu/NO2G after Na adsorption; (f) DOS of Cu/NO2G after K adsorption.

    图 5  不同浓度Li/Na/K嵌入Cu/NO2G的$ {V}_{{\mathrm{o}}{\mathrm{c}}{\mathrm{v}}} $

    Figure 5.  Vocv of the Cu/NO2G with different concentrations of Li/Na/K embedded.

    图 6  Cu/NO2G与其他二维材料的理论比容量对比图

    Figure 6.  Comparison of the theoretical specific capacities between Cu/NO2G monolayer and other 2D anode materials.

    图 7  (a) Li/Na/K在Cu/NO2G的A面迁移路径; (b) Li/Na/K在Cu/NO2G的B面迁移路径; (c) Li/Na/K在Cu/NO2G的A面迁移路径上的扩散势垒; (d) Li/Na/K在Cu/NO2G的B面迁移路径上的扩散势垒

    Figure 7.  (a) Migration pathways of Li/Na/K on side A of Cu/NO2G; (b) migration pathways of Li/Na/K on side B of Cu/NO2G; (c) diffusion barriers of Li/Na/K for the pathways on side A of Cu/NO2G; (d) diffusion barriers of Li/Na/K for the pathways on side B of Cu/NO2G.

    表 1  Cu/NO2G 吸附Li/Na/K后的Bader电荷分析

    Table 1.  Bader charge analysis of Cu/NO2G Li/Na/K adsorbed states.

    Average charge states
    LiNaKCNOCu
    $ {{\mathrm{L}}{\mathrm{i}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.845–0.1621.2321.115–0.355
    $ {{\mathrm{N}}{\mathrm{a}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.835–0.1541.2061.097–0.403
    $ {{\mathrm{K}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.842–0.1421.2241.053–0.503
    DownLoad: CSV
  • [1]

    Liu A, Chen Y T, Cheng X 2022 Environ. Res. Lett. 17 054031Google Scholar

    [2]

    陈海生, 刘畅, 徐玉杰, 岳芬, 刘为, 俞振华 2021 储能科学与技术 10 1477Google Scholar

    Chen H S, Liu C, Xu Y J, Yue F, Liu W, Yu Z H 2021 Energy Storage Sci. Technol. 10 1477Google Scholar

    [3]

    Nzereogu P U, Omah A D, Ezema F I, Iwuoha E I, Nwanya A C 2022 Appl. Surf. Sci. Adv. 9 100233Google Scholar

    [4]

    Hossain M H, Chowdhury M A, Hossain N, Islam M A, Mobarak M H 2023 Chem. Eng. J. Adv. 16 100569Google Scholar

    [5]

    Guo Q B, Han S, Lu Y X, Chen L Q, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar

    [6]

    Jian Z L, Luo W, Ji X L 2015 J. Am. Chem. Soc. 137 11566Google Scholar

    [7]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renew. Sustain. Energy Rev. 119 109549Google Scholar

    [8]

    Sha M, Liu L, Zhao H P, Lei Y 2020 Carbon Energy 2 350Google Scholar

    [9]

    Aslam M K, Niu Y, Xu M 2021 Adv. Energy Mater. 11 2000681Google Scholar

    [10]

    Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S 2014 Nat. Commun. 5 4033Google Scholar

    [11]

    Tan S H, Yang H, Zhang Z, Xu X Y, Xu Y Y, Zhou J, Zhou X C, Pan Z D, Rao X Y, Gu Y D, Wang Z L, Wu Y T, Liu X, Zhang Y 2023 Molecules 28 3134Google Scholar

    [12]

    Lu X Y, Peng H D, Liu G P, Qi F Y, Shi C L, Wu S, Wu Y X, Yang H P, Shan J, Sun Z P 2023 Energy Adv. 2 1294Google Scholar

    [13]

    Kuai J, Xie J, Wang J D, Chen J Y, Liu F, Xu X W, Tu J, Cheng J P 2024 Chem. Phys. Lett. 842 141214Google Scholar

    [14]

    Zhang K, He Q, Xiong F Y, Zhou J P, Zhao Y, Mai L Q, Zhang L N 2020 Nano Energy 77 105018Google Scholar

    [15]

    Lei K X, Wang J, Chen C, Li S Y, Wang S W, Zheng S J, Li F J 2020 Rare Met. 39 989Google Scholar

    [16]

    Feng Z Y, Peng W J, Wang Z X, Guo H J, Li X H, Yan G C, Wang J X 2021 Int. J. Miner. Metall. Mater. 28 1549Google Scholar

    [17]

    Garayt M D L, Zhang L B, Zhang Y X, Obialor M C, Deshmukh J, Xing Y J, Yang C Y, Metzger M, Dahn J R 2024 J. Electrochem. Soc. 171 070523Google Scholar

    [18]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wires Comput. Mol. Sci. 10 e1473Google Scholar

    [19]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [20]

    Hu J P, Xu B, Ouyang C Y, Yang S Y A, Yao Y G 2014 J. Phys. Chem. C 118 24274Google Scholar

    [21]

    Xu Z M, Lv X J, Chen J G, Jiang L X, Lai Y Q, Li J 2017 Phys. Chem. Chem. Phys. 19 7807Google Scholar

    [22]

    Yu Y D, Guo Z L, Peng Q, Zhou J, Sun Z M 2019 J. Mater. Chem. A 7 12145Google Scholar

    [23]

    Yu T, Zhang S T, Li F, Zhao Z Y, Liu L L, Xu H Y, Yang G C 2017 J. Mater. Chem. A 5 18698Google Scholar

    [24]

    张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜 2022 物理学报 71 066501Google Scholar

    Zhang G, Xie H M, Song H B, Li X F, Zhang Q, Kang Y L 2022 Acta Phys. Sin. 71 066501Google Scholar

    [25]

    雷雪玲, 朱巨湧, 柯强, 欧阳楚英 2024 物理学报 73 098804Google Scholar

    Lei X L, Zhu J Y, Ke Q, Ouyang C Y 2024 Acta Phys. Sin. 73 098804Google Scholar

    [26]

    Liang Y B, Liu Z, Wang J, Liu Y 2022 Chin. Phys. B 31 116302Google Scholar

    [27]

    Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R 2021 Ceram. Int. 47 22269Google Scholar

    [28]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374Google Scholar

    [29]

    Bi J X, Du Z Z, Sun J M, Liu Y H, Wang K, Du H F, Ai W, Huang W 2023 Adv. Mater. 35 2210734Google Scholar

    [30]

    Fan X, Zheng W T, Kuo J L, Singh D J 2013 ACS Appl. Mater. Interfaces 5 7793Google Scholar

    [31]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014 J. Phys. Chem. Lett. 5 1225Google Scholar

    [32]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010 Nano Lett. 10 3386Google Scholar

    [33]

    Ferrighi L, Trioni M I, Di Valentin C D 2015 J. Phys. Chem. C 119 6056Google Scholar

    [34]

    Lee H, Paeng K, Kim I S 2018 Synth. Met. 244 36Google Scholar

    [35]

    Datta D, Li J, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 1788Google Scholar

    [36]

    Ma L B, Lv Y H, Wu J X, Xia C, Kang Q, Zhang Y Z, Liang H F, Jin Z 2021 Nano Res. 14 4442Google Scholar

    [37]

    Share K, Cohn A P, Carter R, Rogers B, Pint C L 2016 ACS Nano 10 9738Google Scholar

    [38]

    Ma C C, Shao X H, Cao D P 2012 J. Mater. Chem. 22 8911Google Scholar

    [39]

    Cai D D, Wang C S, Shi C Y, Tan N 2018 J. Alloys Compd. 731 235Google Scholar

    [40]

    Denis P A 2024 J. Mol. Model. 30 96Google Scholar

    [41]

    Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y, Duan X F 2019 Chem. Soc. Rev. 48 5207Google Scholar

    [42]

    Xiao R, Yu T, Yang S, Chen K, Li Z N, Liu Z B, Hu T Z, Hu G J, Li J, Cheng H M, Sun Z H, Li F 2022 Energy Storage Mater. 51 890Google Scholar

    [43]

    Kresse G 1995 J. Non-Cryst. Solids 192–193 222Google Scholar

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [45]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [47]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [48]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [49]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [50]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [51]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [52]

    Khan M I, Nadeem G, Majid A, Shakil M 2021 Mater. Sci. Eng. B 266 115061Google Scholar

    [53]

    Li Y F, Jiang J Z, Li X F, Li M, Zheng Y J, Sun K 2024 Phys. Rev. B 110 155401Google Scholar

    [54]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [55]

    Li P, Li Z Y, Yang J L 2018 J. Phys. Chem. Lett. 9 4852Google Scholar

    [56]

    Lei S F, Chen X F, Xiao B B, Zhang W T, Liu J 2019 ACS Appl. Mater. Interfaces 11 28830Google Scholar

    [57]

    Yang M R, Kong F, Chen L, Tian B W, Guo J 2023 Thin Solid Films 769 139734Google Scholar

    [58]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672Google Scholar

    [59]

    Lin H, Liu G J, Zhu L L, Zhang Z J, Jin R C, Huang Y, Gao S M 2021 Appl. Surf. Sci. 544 148895Google Scholar

    [60]

    Wang Y N, Li Y S 2020 J. Mater. Chem. A 8 4274Google Scholar

    [61]

    Wang Y T, Zhou M, Xu L C, Zhao W T, Li R, Yang Z, Liu R P, Li X Y 2020 J. Power Sources 451 227791Google Scholar

    [62]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [63]

    Mukherjee S, Kavalsky L, Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630Google Scholar

    [64]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016 J. Mater. Chem. A 4 15224Google Scholar

    [65]

    Ahmad S, Din H U, Nguyen C Q, Nguyen S T, Nguyen C 2024 Dalton. Trans. 53 3785Google Scholar

    [66]

    Sannyal A, Zhang Z Q, Gao X F, Jang J 2018 Comput. Mater. Sci. 154 204Google Scholar

    [67]

    Liu M, Cheng Z S, Zhang X M, Li Y F, Jin L, Liu C, Dai X F, Liu Y, Wang X T, Liu G D 2023 Chin. Phys. B 32 096303Google Scholar

    [68]

    Fan K, Ying Y R, Li X, Luo X Y, Huang H T 2019 J. Phys. Chem. C 123 18207Google Scholar

    [69]

    Wang Y, Liang S S, Tian J C, Duan H X, Lv Y, Wan L J, Huang C L, Wu M S, Ouyang C Y, Hu J P 2024 Phys. Chem. Chem. Phys. 26 4455Google Scholar

    [70]

    Li F, Qu Y Y, Zhao M W 2016 J. Mater. Chem. A 4 8905Google Scholar

    [71]

    Samad A, Shafique A, Shin Y H 2017 Nanotechnology 28 175401Google Scholar

    [72]

    Yang Z F, Zheng Y P, Li W L, Zhang J P 2021 Nanoscale 13 11534Google Scholar

    [73]

    Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173Google Scholar

    [74]

    Jing Y, Liu J, Zhou Z P, Zhang J, Li Y 2019 J. Phys. Chem. C 123 26803Google Scholar

    [75]

    Hu J P, Xu B, Ouyang C Y, Zhang Y, Yang S A 2016 RSC Adv. 6 27467Google Scholar

    [76]

    Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J. Mater. Chem. A 5 21370Google Scholar

    [77]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754Google Scholar

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Acta Physica Sinica, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [6] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [7] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [8] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [10] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [11] Lu Zhan-Sheng, Li Yan, Cheng Ying-Jie, Li Shuo, Zhang Xi-Lin, Xu Guo-Liang, Yang Zong-Xian. First-principles study on the hydrogenation of the O2 on TiN4 embedded graphene. Acta Physica Sinica, 2015, 64(21): 216101. doi: 10.7498/aps.64.216101
    [12] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [13] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [14] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [15] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [17] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] Xia Zhong-Qiu, Li Rong-Ping. First principles study of rare earth doped in ZnTe used for CdTe solar cell back contact layer. Acta Physica Sinica, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [19] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [20] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
Metrics
  • Abstract views:  234
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2024
  • Accepted Date:  05 December 2024
  • Available Online:  12 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回