Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ferromagnetic torsional oscillator based magnetic field measurement and its applications

WU Lielie REN Yichong XUE Fei

Citation:

Ferromagnetic torsional oscillator based magnetic field measurement and its applications

WU Lielie, REN Yichong, XUE Fei
cstr: 32037.14.aps.74.20241538
PDF
HTML
Get Citation
  • The ferromagnetic-mechanical system can be used as a magnetometer by monitoring its mechanical response to magnetic signals. This system can exceed the energy resolution limit (ERL) in terms of sensitivity, due to the ultra-high spin density and strong spin-lattice interactions inherent in ferromagnetic materials. A levitated ferromagnetic-mechanical system can further enhance its quality factor by eliminating clamp dissipation, thus achieving higher magnetic sensitivity. In this work, a magnetometer is proposed based on a magnetically levitated ferromagnetic torsional oscillator (FMTO), which transforms magnetic signals into torque to drive the oscillator. An optical method is then used to measure the torsional motion and extract the magnetic signal. The resonance frequency of this FMTO system can be controlled by modifying the bias field, thus providing enhanced flexibility and control.By analyzing the influence of fundamental noise, including thermal noise and quantum measurement noise (SQL), the relationship between the magnetic noise floor of the FMTO made of NdFeB and its radius is obtained. The SQL is much lower than both thermal noise and ERL, indicating that thermal noise is a dominant factor affecting the magnetic sensitivity of the FMTO. The magnetic sensitivity of the FMTO system at $4.2\ \rm{K}$ exceeds the ERL by three orders of magnitude, confirming the significant potential application of the FMTO system in high-precision magnetic measurements.Searching for exotic interactions is one of the most promising applications of ultra-high sensitivity magnetic sensors. It is typically achieved by measuring pseudo-magnetic fields. The accuracy of detecting exotic interactions depends on two main factors: the magnetometer’s sensitivity and the distance between the sensor and the source. The ERL presents challenges in meeting both of these factors simultaneously. Improving magnetic sensitivity typically increases the radius of the sensor, which in turn increases the distance between the sensor and the source, limiting the accuracy of detecting exotic interactions. Thus, ERL limits the accuracy of exotic interaction detection, while the FMTO, with its excellent sensitivity, is expected to significantly improve the detection of exotic interactions.If there is an exotic interaction, the BGO nuclei oscillating perpendicular to the paper will generate a pseudo-magnetic field along the vertical direction. This pseudo-magnetic field will induce torsional motion in the FMTO. The lower limit of the coupling constant for the new interaction is determined by measuring the torsional motion. Existing experiments have approached the ERL at Compton wavelengths on millimeter and micrometer scales. However, the FMTO system, with a bias field of 1 μT, exceeds the ERL by up to five orders of magnitude in sub-centimeter Compton wavelength and the existing experimental results by two to nine orders of magnitude. These results highlight the potential advantages of FMTO-based magnetometers in probing exotic interactions.All in all, in this work, a magnetometer configuration is proposed based on a levitated FMTO and its mechanical response, fundamental noise, magnetic performance, and applications in fundamental research are analyzed comprehensively.
      Corresponding author: REN Yichong, renyichong@outlook.com ; XUE Fei, xfei.xue@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12150011).
    [1]

    Xia H, Ben-Amar Baranga A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [2]

    Harada S, Sasada I, Hang F 2015 Electron. Commun. Jpn. 98 20Google Scholar

    [3]

    Dolabdjian C, Saez S, Reyes Toledo A, Robbes D 1998 Rev. Sci. Instrum. 69 3678Google Scholar

    [4]

    Germain-Jones D T 1957 J. Sci. Instrum. 34 1Google Scholar

    [5]

    Mohanty I, Nagendran R, Arasu A V T, Baskaran R, Mani A 2018 Meas. Sci. Technol. 29 105601Google Scholar

    [6]

    Nabighian M N, Grauch V J S, Hansen R O, et al. 2005 Geophysics 70 33Google Scholar

    [7]

    赵龙, 颜廷君 2013 物理学报 62 067702Google Scholar

    Zhao L, Yan T J 2013 Acta Phys. Sin. 62 067702Google Scholar

    [8]

    Pedersen L W, Merenyi L 2016 J. Ind. Geophys. Union. Special Volume-2 30

    [9]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [10]

    Wang Y H, Huang Y, Guo C, et al. 2023 Sci. Adv. 9 eade0353Google Scholar

    [11]

    Wang Y H, Su H W, Jiang M, et al. 2022 Phys. Rev. Lett. 129 051801Google Scholar

    [12]

    Su H W, Wang Y H, Jiang M, Ji W, Fadeev P, Hu D D, Peng X H, Budker D 2021 Sci. Adv. 7 eabi9535Google Scholar

    [13]

    Braginsky V B 1968 Sov. Phys. Jetp. 26 831

    [14]

    Braginsky V B, Vorontsov Y I 1975 Sov. Phys. Usp. 17 644Google Scholar

    [15]

    Mitchell M W, Palacios Alvarez S 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [16]

    Vinante A, Timberlake C, Budker D, Kimball D F J, Sushkov A O, Ulbricht H 2021 Phys. Rev. Lett. 127 070801Google Scholar

    [17]

    Vinante A, Falferi P, Gasbarri G, Setter A, Timberlake C, Ulbricht H 2020 Phys. Rev. Appl. 13 064027Google Scholar

    [18]

    Jackson Kimball D F, Sushkov A O, Budker D 2016 Phys. Rev. Lett. 116 190801Google Scholar

    [19]

    Fadeev P, Wang T, Band Y B, Budker D, Graham P W, Sushkov A O, Kimball D F J 2021 Phys. Rev. D 103 044056Google Scholar

    [20]

    Fadeev P, Timberlake C, Wang T, et al. 2021 Quantum. Sci. Technol. 6 024006Google Scholar

    [21]

    张莉, 刘立, 曹力 2010 物理学报 59 1494Google Scholar

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494Google Scholar

    [22]

    Slezak B R, Lewandowski C W, Hsu J F, D Urso B 2018 New J. Phys. 20 063028Google Scholar

    [23]

    Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H 2019 Appl. Phys. Lett. 115 224101Google Scholar

    [24]

    Zheng D, Leng Y C, Kong X, et al. 2020 Phys. Rev. Res. 2 013057Google Scholar

    [25]

    Gieseler J, Novotny L, Quidant R 2013 Nat. Phys. 9 806Google Scholar

    [26]

    Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S, Barker P F 2015 Phys. Rev. Lett. 114 123602Google Scholar

    [27]

    Wang T, Lourette S, O’Kelley S R, et al. 2019 Phys. Rev. Appl. 11 044041Google Scholar

    [28]

    Schloss J M, Barry J F, Turner M J, Walsworth R L 2018 Phys. Rev. Appl. 10 034044Google Scholar

    [29]

    Callen H B, Welton T A 1951 Phys. Rev. 83 34Google Scholar

    [30]

    Nimmrichter S, Hornberger K, Hammerer K 2014 Phys. Rev. Lett. 113 020405Google Scholar

    [31]

    Losby J E, Sauer V T K, Freeman M R 2018 J. Phys. D: Appl. Phys. 51 483001Google Scholar

    [32]

    Leslie T M, Weisman E, Khatiwada R, Long J C 2014 Phys. Rev. D 89 114022Google Scholar

    [33]

    Wu L H, Lin S C, Kong X, Wang M Q, Zhou J W, Duan C K, Huang P, Zhang L, Du J F 2023 PNAS 120 e2302145120Google Scholar

    [34]

    Ding J H, Wang J B, Zhou X, et al. 2020 Phys. Rev. Lett. 124 161801Google Scholar

    [35]

    Wu D G, Liang H, Jiao M, Cai Y F, Duan C K, Wang Y, Rong X, Du J F 2023 Phys. Rev. Lett. 131 071801Google Scholar

    [36]

    Piegsa F M, Pignol G 2012 Phys. Rev. Lett. 108 181801Google Scholar

    [37]

    Kim Y J, Chu P H, Savukov I 2018 Phys. Rev. Lett. 121 091802Google Scholar

  • 图 1  铁磁球体在磁场中的运动模式: 铁磁扭摆振子(左图)和铁磁陀螺(右图)

    Figure 1.  Patterns of ferromagnetic magnets in a magnetic field: Ferromagnetic orsion pendulum oscillator (left panel) and ferromagnetic gyroscope (right panel).

    图 2  铁磁半径及外磁场对运动模式的影响

    Figure 2.  Ferromagnets’ motion pattern decided by external field and its radius.

    图 3  (a) FMTO磁噪声与测量频率关系: ERL噪声(蓝虚线), SQL噪声(橙虚线), $ 4.2\ {\rm{K}} $热噪声(红实线)与$ 50\ {\rm{mK}} $热噪声(粉实线); (b) FMTO磁噪声本底与半径关系: ERL噪声(蓝虚线), 共振时SQL噪声(橙虚线), $ 4.2\ {\rm{K}} $ FMTO热噪声极限(红实线), 特定磁场下$ 4.2\ {\rm{K}} $ FMTO热噪声(粉实线)

    Figure 3.  (a) Magnetic noise versus frequency for FMTO: ERL (blue dashed), SQL (orange dashed), Thermal at $ 4.2\ {\rm{K}} $ (red solid) and at $ 50\ {\rm{m K}} $ (pink solid); (b) magnetic noise versus radius for FMTO: ERL (blue dashed), resonant SQL (orange dashed), Thermal limit at $ 4.2\ {\rm{K}} $ (red solid) and with special bias field (pink solid).

    图 4  (a) 新相互作用探测示意图; (b) 新相互作用探测: I[34], II[33], III[35], IV[36], V[37]均为实验结果, VI和VII分别对应FMTO和ERL固定间距下探测结果, VIII和IX分别代表FMTO和ERL的最优结果

    Figure 4.  (a) Schematic of the detection of exotic interactions; (b) exotic interactions probes: I[34], II[33], III[35], IV[36], V[37] all are experimental results; VI and VII are the results acheived by FMTO and ERL under fixed pitch respectively, VIII and IX are the optimal results of FMTO and ERL respectively.

  • [1]

    Xia H, Ben-Amar Baranga A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [2]

    Harada S, Sasada I, Hang F 2015 Electron. Commun. Jpn. 98 20Google Scholar

    [3]

    Dolabdjian C, Saez S, Reyes Toledo A, Robbes D 1998 Rev. Sci. Instrum. 69 3678Google Scholar

    [4]

    Germain-Jones D T 1957 J. Sci. Instrum. 34 1Google Scholar

    [5]

    Mohanty I, Nagendran R, Arasu A V T, Baskaran R, Mani A 2018 Meas. Sci. Technol. 29 105601Google Scholar

    [6]

    Nabighian M N, Grauch V J S, Hansen R O, et al. 2005 Geophysics 70 33Google Scholar

    [7]

    赵龙, 颜廷君 2013 物理学报 62 067702Google Scholar

    Zhao L, Yan T J 2013 Acta Phys. Sin. 62 067702Google Scholar

    [8]

    Pedersen L W, Merenyi L 2016 J. Ind. Geophys. Union. Special Volume-2 30

    [9]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [10]

    Wang Y H, Huang Y, Guo C, et al. 2023 Sci. Adv. 9 eade0353Google Scholar

    [11]

    Wang Y H, Su H W, Jiang M, et al. 2022 Phys. Rev. Lett. 129 051801Google Scholar

    [12]

    Su H W, Wang Y H, Jiang M, Ji W, Fadeev P, Hu D D, Peng X H, Budker D 2021 Sci. Adv. 7 eabi9535Google Scholar

    [13]

    Braginsky V B 1968 Sov. Phys. Jetp. 26 831

    [14]

    Braginsky V B, Vorontsov Y I 1975 Sov. Phys. Usp. 17 644Google Scholar

    [15]

    Mitchell M W, Palacios Alvarez S 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [16]

    Vinante A, Timberlake C, Budker D, Kimball D F J, Sushkov A O, Ulbricht H 2021 Phys. Rev. Lett. 127 070801Google Scholar

    [17]

    Vinante A, Falferi P, Gasbarri G, Setter A, Timberlake C, Ulbricht H 2020 Phys. Rev. Appl. 13 064027Google Scholar

    [18]

    Jackson Kimball D F, Sushkov A O, Budker D 2016 Phys. Rev. Lett. 116 190801Google Scholar

    [19]

    Fadeev P, Wang T, Band Y B, Budker D, Graham P W, Sushkov A O, Kimball D F J 2021 Phys. Rev. D 103 044056Google Scholar

    [20]

    Fadeev P, Timberlake C, Wang T, et al. 2021 Quantum. Sci. Technol. 6 024006Google Scholar

    [21]

    张莉, 刘立, 曹力 2010 物理学报 59 1494Google Scholar

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494Google Scholar

    [22]

    Slezak B R, Lewandowski C W, Hsu J F, D Urso B 2018 New J. Phys. 20 063028Google Scholar

    [23]

    Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H 2019 Appl. Phys. Lett. 115 224101Google Scholar

    [24]

    Zheng D, Leng Y C, Kong X, et al. 2020 Phys. Rev. Res. 2 013057Google Scholar

    [25]

    Gieseler J, Novotny L, Quidant R 2013 Nat. Phys. 9 806Google Scholar

    [26]

    Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S, Barker P F 2015 Phys. Rev. Lett. 114 123602Google Scholar

    [27]

    Wang T, Lourette S, O’Kelley S R, et al. 2019 Phys. Rev. Appl. 11 044041Google Scholar

    [28]

    Schloss J M, Barry J F, Turner M J, Walsworth R L 2018 Phys. Rev. Appl. 10 034044Google Scholar

    [29]

    Callen H B, Welton T A 1951 Phys. Rev. 83 34Google Scholar

    [30]

    Nimmrichter S, Hornberger K, Hammerer K 2014 Phys. Rev. Lett. 113 020405Google Scholar

    [31]

    Losby J E, Sauer V T K, Freeman M R 2018 J. Phys. D: Appl. Phys. 51 483001Google Scholar

    [32]

    Leslie T M, Weisman E, Khatiwada R, Long J C 2014 Phys. Rev. D 89 114022Google Scholar

    [33]

    Wu L H, Lin S C, Kong X, Wang M Q, Zhou J W, Duan C K, Huang P, Zhang L, Du J F 2023 PNAS 120 e2302145120Google Scholar

    [34]

    Ding J H, Wang J B, Zhou X, et al. 2020 Phys. Rev. Lett. 124 161801Google Scholar

    [35]

    Wu D G, Liang H, Jiao M, Cai Y F, Duan C K, Wang Y, Rong X, Du J F 2023 Phys. Rev. Lett. 131 071801Google Scholar

    [36]

    Piegsa F M, Pignol G 2012 Phys. Rev. Lett. 108 181801Google Scholar

    [37]

    Kim Y J, Chu P H, Savukov I 2018 Phys. Rev. Lett. 121 091802Google Scholar

  • [1] WEN Tao, MA Yuhang, WANG Dequan, CHEN Haoran, LI Yanfang, XU Yang, WANG Zhiguang. Dual-mode low noise large range magnetic sensor based on giant magnetoimpedance effect. Acta Physica Sinica, 2025, 74(3): 038501. doi: 10.7498/aps.74.20241498
    [2] Tu Bing-Sheng. Precise measurements of electron g factors in bound states of few-electron ions. Acta Physica Sinica, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [9] Gao Peng-Lin, Zheng Hao, Sun Guang-Ai. Constraints of neutron star on new interaction ofspin-dependent axial-vector coupling. Acta Physica Sinica, 2019, 68(18): 181102. doi: 10.7498/aps.68.20190477
    [10] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [11] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [12] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [13] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [15] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer. Acta Physica Sinica, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [18] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [19] Cheng Tai-Min, Luo Hong-Chao, Li Lin. Effect of optical phonon-magnon interaction on the magnon life-time at finite temperature. Acta Physica Sinica, 2008, 57(10): 6531-6539. doi: 10.7498/aps.57.6531
    [20] Shi Qing-Fan, Li Liang-Sheng, Zhang Mei. Effectivity of Hamiltonian terms of "forbidden" 3-magnon interaction. Acta Physica Sinica, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
Metrics
  • Abstract views:  268
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2024
  • Accepted Date:  10 December 2024
  • Available Online:  17 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回