-
Solid-state lithium batteries possess numerous advantages, including high energy density, excellent cycle stability, superior mechanical strength, non-flammability, enhanced safety, and extended service life. These characteristics make them highly suitable for applications in aerospace, new energy vehicles, and portable electronic devices. However, lithium dendrite growth at the electrode/electrolyte interface remains a critical challenge, limiting both performance and safety. The growth of lithium dendrites within the electrolyte not only reduces the battery’s Coulombic efficiency but also risks piercing the electrolyte, leading to internal short circuits between the anode and cathode. This study addresses the issue of lithium dendrite growth in solid-state lithium batteries by employing phase-field theory for numerical simulations. A phase-field model is developed, coupling the mechanical stress field, thermal field, and electrochemical field, to investigate the morphology and evolution of lithium dendrites under different ambient temperatures, external pressures, and their combined effects. The results indicate that higher temperatures and greater external pressures significantly suppress lithium dendrite growth, leading to fewer side branches, smoother surfaces, and more uniform electrochemical deposition. Increased external pressure inhibits longitudinal dendrite growth, resulting in a compressed morphology with higher specific surface area and compactness, though at the cost of increased mechanical instability. Similarly, elevated ambient temperatures enhance lithium-ion diffusion and reaction rates, which further suppress dendrite growth rates and sizes. The combined effects of temperature and pressure exhibit a pronounced inhibitory influence on dendrite growth, with stress concentrating at the dendrite roots. This stress distribution promotes lateral growth, facilitating the formation of flatter and denser lithium deposits.
-
Keywords:
- solid-state lithium batteries /
- phase-field model /
- lithium dendrites /
- mechaincal-thermo-electrochemical coupling
-
[1] Goodenough J B, Singh P 2015J. Electrochem. Soc. 162 A2387.
[2] Peters B K, Rodriguez K X, Reisberg S H, Beil S B, Hickey D P, Y Kawamata, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey T J, Anderson S L, Neurock M, Minteer S D, Baran P S 2019Science. 363 838.
[3] Geng X B, Li D G, Xu B. 2023Acta Phys. Sin. 72 220201(in Chinese)[耿晓彬, 李顶根, 徐波2023物理学报72 220201]
[4] Viswanathan V, Epstein A H, Chiang Y M, Esther T, Bradley M, Langford J, Winter M 2022Nature. 601 519.
[5] Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K N, Kim B J, Lee S W 2022Nature. 601 217.
[6] Hao F, Verma A, Mukherjee P P 2018J. Mater. Chem. A 6 19664.
[7] Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q 2016J. Electrochem. Soc. 163 A592.
[8] Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020Acta Phys. Sin. 69 226401(in Chinese) [张更, 王巧, 沙立婷,李亚捷, 王达, 施思齐2020物理学报69 226401]
[9] Sripad S, Viswanathan V 2017Electrochem. Soc. 164 E3635.
[10] Sripad S, Viswanathan V 2017ACS Energy Lett. 2 1669.
[11] Guttenberg M, Sripad S, Viswanathan V 2017ACS Energy Lett. 2 2642.
[12] GUYER J E, BOETTINGER W J, WARREN J A, McFadden G B 2004Phys. Rev. E 69 021603.
[13] Kobayashi R 1993 PHYSICA D. 63 410.
[14] Liang L Y, Qi Y, Xue F, Bhattacharya S, Harris, S J, Chen L Q 2012Phys. Rev. E. 86 051609.
[15] Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015J. Power Sources. 300 376.
[16] Shen X, Zhang R, Shi P, Chen X, Zhang Q 2021Adv Energy Mater. 11 2003416.
[17] Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018Energy Convers Manag. 161 193.
[18] Hong Z J, Viswanathan V 2019ACS Energy Lett. 4 1012-1019.
[19] Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018MRS Communications. 8 1285.
[20] Qi G Q, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2024J. Energy Storage 101113899.
[21] Arguello M E, Labanda N A, Calo V M, Gumulya M, Utikar R, Derksen J 2022J. Energy Storage 53104892.
[22] Jiang W J, Wang Z H, Hu L Z, Wang Y, Ma Z S 2024 J. Energy Storage 86 111126.
[23] LIANG C, XING P F, WU M W, QIN X P 2024Energy Storage Science and Technology 11252095-4239(in Chinese)[梁辰, 邢鹏飞, 吴孟武, 秦训鹏2024储能科学与技术1125 2095-4239].
[24] Cahn J W, Allen S M 1977 Journal de Physique Colloques 38 C7-51.
[25] Allen S M, Cahn J W 1979Acta metall 271085.
[26] Liang Y H, Fan L Z 2020Acta Phys. Sin. 69 226201(in Chinese)[梁宇皓, 范丽珍2020物理学报69 226201]
[27] Wu W, Xiao X, Huang X S 2012Electrochimica Acta 83 227.
[28] Doyle M, Newman J, Góźdź A S, Schmutz C, Tarascon J M 1996J Electrochem Soc. 143 1890.
[29] Stewart S G, Newman J 2008J. Electrochem. Soc. 155F13.
[30] Zhang Y X, Li Y F, Shen W J, Li K, Lin Y X 2023ACS Appl. Energy Mater. 61933-1945.
[31] Yang H D, Wang Z J 2023J Solid State Electr 27 2607.
[32] Cui J, Shi C, Zhao J B 2021CIESC Journal. 72 3511(in Chinese)[崔锦,石川,赵金保2021化工学报72 3511]
[33] Yin X S, Tang W, Jung I D, Phua K C, Adams S., Lee S W, Zheng G W 2018Nano Energy 50 659-664.
[34] Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018Acta Phys. Sin. 67 128501(in Chinese)[王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓2018物理学报67 128501]
[35] Qiao D G, LIU X L, WEN Z, DOU R F, ZHOU W N 2022ESST. 11 1008(in Chinese)[乔东格, 刘训良, 温治, 豆瑞峰, 周文宁2022储能科学与技术11 1008]
[36] Yan K, Wang J Y, Zhao S Q, Zhou D, Sun B, Cui Y, Wang G X 2019Angew Chem Int Edit. 58 11364
Metrics
- Abstract views: 158
- PDF Downloads: 16
- Cited By: 0