-
Magnetic high-entropy alloy (HEA) has certain application prospects in the fields of energy conversion, hysteresis motor, electromagnetic control mechanism and others. In this study, AlCoCrCuFeNi HEA is prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior are studied systematically. The results show that the SLMed alloy mainly consists of a BCC matrix phase with a small quantity of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole sample shows excellent micromechanical properties. Besides, it is found that the room-temperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs is mainly controlled by dislocation motion, which is different from the results given by the traditional classical creep theory. Both of SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar quantity of ferromagnetic elements (Fe,Co and Ni). However, the coercivity increases from 1.72 to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effects of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further studying the optimization of comprehensive magnetic properties and the room temperature creep mechanism of SLMed high-entropy alloy.
-
Keywords:
- selective laser melting /
- AlCoCrCuFeNi high-entropy alloy /
- semi-hard magnetic property /
- micro-mechanical behavior
-
图 3 不同工艺参数下制备的SLM成形态AlCoCrCuFeNi高熵合金的XRD图谱 (a) 激光扫描速率为1450 mm/s, 激光功率为110—150 W; (b) 激光功率为130 W, 激光扫描速率为1350—1550 mm/s
Figure 3. The XRD spectra of SLMed samples, (a) processed at 1450 mm/s laser scanning and different laser power (110–150 W), (b) processed at 130 W laser power and different (1350–1550 mm/s) laser scanning speed, respectively.
图 4 SLM成形态试样的典型微观结构 (a), (b) SEM形貌图; (c), (d) TEM明场像图; (e), (f) 选区电子衍射图; (g)表示位错堆积和缠结的TEM明场像图
Figure 4. Typical microstructures of SLMed samples: (a), (b) SEM images; (c), (d) bright-field TEM images; (e), (f) the selective area electron diffraction; (g) TEM bright field image showing the dislocation pile up and entanglement.
表 1 AlCoCrCuFeNi粉末的化学成分及各元素的特征参数
Table 1. Chemical compositions and element-characteristic parameters of the AlCoCrCuFeNi powders.
Elements Al Co Cr Cu Fe Ni Mass fraction/% 8.85 18.86 16.59 20.28 17.25 18.11 density/(g·mm–3) 2.7 8.85 7.75 8.90 7.87 8.85 Melting point/K 933 1770 2123 1356 1811 1728 Average atomic/nm 0.1432 0.1363 0.1249 0.1280 0.1270 0.1240 Structure FCC HCP BCC FCC BCC FCC VEC* 3 9 6 11 8 10 *VEC—valence electron concentration. 表 2 SLM制备AlCoCrCuFeNi高熵合金的工艺参数
Table 2. Process parameters of fabricating AlCoCrCuFeNi HEAs using SLM technique.
工艺参数 取值 Laser thickness (t)/μm 40 Laser power (P)/W 110—150 Scan velocity (v)/(mm·s–1) 1350—1550 Hatch spacing (h)/μm 50 表 3 不同激光功率(P)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数
Table 3. The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser power.
P/W VBCC/% VFCC/% aBCC/Å aFCC/Å 110 94.89 5.11 2.8709±0.0006 3.6100±0.0006 120 94.38 5.62 2.8726±0.0017 3.6280±0.0007 130 94.24 5.76 2.8752±0.0012 3.6289±0.0017 140 93.41 6.59 2.8762±0.0011 3.6310±0.0023 150 92.04 7.96 2.8763±0.0006 3.6367±0.0014 表 4 不同扫速(v)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数
Table 4. The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser scanning.
v/(mm·s–1) VBCC/% VFCC/% aBCC/(Å aFCC/Å 1350 94.84 5.16 2.8840±0.0029 3.6460±0.0012 1400 94.89 5.11 2.8825±0.0012 3.6289±0.0017 1450 93.75 6.25 2.8810±0.0034 3.6430±0.0006 1500 94.13 5.87 2.8773±0.0015 3.6358±0.0021 1550 93.62 6.38 2.8737±0.0009 3.6297±0.0024 表 5 不同激光功率下合金的纳米压痕参数
Table 5. Nanoindentation of alloys at different laser power.
P/W Hmax /nm Nano-hardness/GPa E/GPa 110 321.5±13.8 8.8±0.9 202.3±8.4 120 322.4±2.1 8.7±0.2 202.5±6.7 130 323.2±13.6 8.7±0.8 208.9±15.6 140 326.8±6.2 8.5±0.5 201.8±2.3 150 332.3±8.4 8.2±0.5 203.8±5.0 表 6 不同激光扫描速度下合金的纳米压痕参数
Table 6. Nanoindentation of alloys at different laser scanning speed.
v/(mm·s–1) Hmax /nm Nano-hardness/GPa E/GPa 1350 331.0±6.3 8.2±0.4 199.2±10.9 1400 323.2±13.6 8.7±0.8 208.9±15.6 1450 322.3±3.8 8.8±0.2 201.7±8.6 1500 338.7±8.5 7.7±0.4 197.0±7.7 1550 332.3±8.4 8.1±0.5 193.3±5.0 -
[1] 严密, 彭晓领 2019 磁学基础与磁性材料 (杭州: 浙江大学出版社)第184页
Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184
[2] Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Mater. 116 63
Google Scholar
[3] Huang P K, Yeh J W, Shun T T, Chen S K 2004 Adv. Eng. Mater. 6 74
Google Scholar
[4] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299
Google Scholar
[5] Cantor B 2014 Entropy 16 4749
Google Scholar
[6] Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Mater. 281 120421
Google Scholar
[7] Liu C, Zhang L C, Wang K, Wang L 2025 Acta Mater. 283 120526
Google Scholar
[8] Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H T 2024 J. Adv. Ceram. 13 780
Google Scholar
[9] Feltrin A C, Hedman D, Akhtar F 2024 J. Adv. Ceram. 13 1268
Google Scholar
[10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 67 046102
Google Scholar
Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 046102
Google Scholar
[11] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601
Google Scholar
Cheng J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601
Google Scholar
[12] Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310
Google Scholar
[13] Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Mater. 254 118970
Google Scholar
[14] Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82
Google Scholar
[15] Zhang M, George E P, Gibeling J C 2021 Scr. Mater. 194 113633
Google Scholar
[16] Jo M G, Suh J Y, Kim M Y, Kim H J, Jung W S, Kim D I, Han H N 2022 Mater. Sci. Eng. , A 838 142748
Google Scholar
[17] Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Mater. Lett. 164 344
Google Scholar
[18] Liu C J, Gadelmeier C, Lu S L, Yeh J W, Yen H W, Gorsse S, Glatzel U, Yeh A C 2022 Acta Mater. 237 118188
Google Scholar
[19] Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Addit. Manuf. 28 766
[20] https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002 [Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. [OL] [李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 2024 材料工程OL]]
[21] Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 J. Alloys Compds. 889 161800
Google Scholar
[22] Zhang M, George E P, Gibeling J C 2021 Acta Mater. 218 117181
Google Scholar
[23] Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 J. Alloys Compds. 894 162380
Google Scholar
[24] Zhou J, Liao H, Chen H, Huang A 2021 J. Alloys Compds. 859 157851
Google Scholar
[25] Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 J. Alloys Compds. 784 195
Google Scholar
[26] Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Mater. Sci. Eng. , A 918 147469
Google Scholar
[27] Zhao Y, Guo Q, Ma Z, Yu L 2020 Mater. Sci. Eng. , A 791 139735
Google Scholar
[28] Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Addit. Manuf. 71 103593
[29] Özden M G, Freeman F S H B, Morley N A 2023 Adv. Eng. Mater. 25 2300597
Google Scholar
[30] Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 J. Alloys Compds. 1010 177740
Google Scholar
[31] Manzoni A M, Glatzel U 2019 Mater. Charact. 147 512
Google Scholar
[32] Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746
Google Scholar
[33] Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137
Google Scholar
[34] 张尚洲, 李子福, 王瑞, 孙广宝, 刘国浩, 于鸿垚 2024 航空制造技术 67 14
Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aeronaut. Manuf. Technol. 67 14
[35] Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 J. Magn. Magn. Mater. 589 171506
Google Scholar
[36] Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1
Google Scholar
[37] Brück E H. , ed. 2017 Handbook of magnetic materials (Amsterdam: Elsevier) pp 9–11
[38] Tan X, Chen L, Lü M, Peng W, Xu H 2023 Materials 16 7222
Google Scholar
[39] 徐震霖 2021 博士 学位论文(马鞍山: 安徽工业大学)
Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology
[40] Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24
Google Scholar
[41] Poisl W H, Oliver W C, Fabes B D 1995 J. Mater. Res. 10 2024
Google Scholar
[42] Nabarro F R N, De Villiers F 2018 Physics of creep and creep-resistant alloys (London: CRC press)pp 46–81
Metrics
- Abstract views: 275
- PDF Downloads: 11
- Cited By: 0