-
Magnetic high-entropy alloy (HEA) is prospective in the application of energy conversion, hysteresis motor, electromagnetic control mechanism and other related fields. In this study, AlCoCrCuFeNi HEA was prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior were studied systematically. The results show that the SLMed alloys mainly consist of a BCC matrix phase with a small amount of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole samples show excellent micromechanical properties. Besides, it was found the roomtemperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs was mainly controlled by dislocation motion, which is different from the traditional classical creep theory. Both SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar content of ferromagnetic elements (Fe,Co and Ni). However, the coercivity increases from 1.72 kA/m to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 kA/m to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effect of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further study on optimizing comprehensive magnetic properties and room temperature creep mechanism of SLMed high-entropy alloy.
-
Keywords:
- Selective laser melting (SLM) /
- AlCoCrCuFeNi high-entropy alloy /
- semi-hard magnetic property /
- micro-mechanical behavior
-
[1] Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184(in Chinese)[严密,彭晓领 2019 磁学基础与磁性材料 (杭州:浙江大学出版社)第184页]
[2] Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Materialia 116 63
[3] Huang P K, Yeh J W, Shun T T, Chen S K 2004 Advanced Engineering Materials 6 74
[4] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Advanced engineering materials 6 299
[5] Cantor B 2014 Entropy 16 4749
[6] Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Materialia 281 120421
[7] Liu C, Zhang L-C, Wang K, Wang L 2025 Acta Materialia 283 120526
[8] Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H-T 2024 Journal of Advanced Ceramics 13 780
[9] Feltrin A C, Hedman D, Akhtar F 2024 Journal of Advanced Ceramics 13 1268
[10] Ren X L, Zhang W W,Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 172(in Chinese)[任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 69 172]
[11] Cheng J J, Qiu X L,Li K, Zhou D,Yuan J J 2022 Acta Phys. Sin. 71 369(in Chinese)[陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 369]
[12] Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310
[13] Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Materialia 254 118970
[14] Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82
[15] Zhang M, George E P, Gibeling J C 2021 Scripta Materialia 194 113633
[16] Jo M-G, Suh J-Y, Kim M-Y, Kim H-J, Jung W-S, Kim D-I, Han H N 2022 Materials Science and Engineering: A 838 142748
[17] Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Materials Letters 164 344
[18] Liu C-J, Gadelmeier C, Lu S-L, Yeh J-W, Yen H-W, Gorsse S, Glatzel U, Yeh A-C 2022 Acta Materialia 237 118188
[19] Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Additive Manufacturing 28 766
[20] Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. [OL](in Chinese)[李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 材料工程 OL] (https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002)
[21] Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 Journal of Alloys and Compounds 889 161800
[22] Zhang M, George E P, Gibeling J C 2021 Acta Materialia 218 117181
[23] Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 Journal of Alloys and Compounds 894 162380
[24] Zhou J, Liao H, Chen H, Huang A 2021 Journal of Alloys and Compounds 859 157851
[25] Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 Journal of Alloys and Compounds 784 195
[26] Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Materials Science and Engineering: A 918 147469
[27] Zhao Y, Guo Q, Ma Z, Yu L 2020 Materials Science and Engineering: A 791 139735
[28] Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Additive Manufacturing 71 103593
[29] Özden M G, Freeman F S H B, Morley N A 2023 Advanced Engineering Materials 25 2300597
[30] Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 Journal of Alloys and Compounds 1010 177740
[31] Manzoni A M, Glatzel U 2019 Materials Characterization 147 512
[32] Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746
[33] Allia P, Baricco M, Tiberto P, Vinai F 1993 Journal of Applied Physics 74 3137
[34] Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aviat. Manuf. Technol. 67 14(in Chinese) [张尚洲 李子福, 王瑞, 孙广宝,刘国浩,于鸿垚2024 航空制造技术 67 14]
[35] Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 Journal of Magnetism and Magnetic Materials 589 171506
[36] Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1
[37] Brück, E H., ed. 2017 Handbook of magnetic materials (Amsterdam: Elsevier) pp 9-11
[38] Tan X, Chen L, Lv M, Peng W, Xu H 2023 Materials 16 7222
[39] Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology) (in Chinese) [徐震霖 2021 博士 学位论文(马鞍山:安徽工业大学)]
[40] Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24
[41] Poisl W H, Oliver W C, Fabes B D 1995 Journal of Materials Research 10 2024
[42] Nabarro F R N, De Villiers F 2018 Physics of creep and creep-resistant alloys (London: CRC press)pp 46-81
Metrics
- Abstract views: 55
- PDF Downloads: 3
- Cited By: 0