Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deformation mechanisms and compressive response of NbTaTiZr alloy via machine learning potentials

LIU Hongyang CHEN Bo CHEN Rong KANG Dongdong DAI Jiayu

Citation:

Deformation mechanisms and compressive response of NbTaTiZr alloy via machine learning potentials

LIU Hongyang, CHEN Bo, CHEN Rong, KANG Dongdong, DAI Jiayu
cstr: 32037.14.aps.74.20250738
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Refractory multi-principal element alloys (RMPEAs)have become a hotspot in materials science research in recent years due to their excellent high-temperature mechanical properties and broad application prospects. However, the unique deformation mechanisms and mechanical behaviors of the NbTaTiZr quaternary RMPEA under extreme conditions such as high temperature and high strain rate are still unclear, limiting its further design and engineering applications. In order to reveal in depth the dynamic response of this alloy on an atomic scale, this study develops a high-accuracy machine learning potential (MLP) for the NbTaTiZr quaternary alloy and combines it with large-scale molecular dynamics (MD) simulations to systematically investigate the effects of crystallographic orientation, strain rate, temperature, and chemical composition on the mechanical properties and microstructural evolution mechanisms of the alloy under compressive loading. The results show that the NbTaTiZr alloy exhibits significant mechanical and structural anisotropy during uniaxial compression. The alloy exhibits the highest yield strength when loaded along the [111] crystallographic direction, while it shows the lowest yield strength when compressed along the [110] direction, where twinning is more likely to occur. Under compression along the [100] direction, the primary deformation mechanisms include local disordering transitions and dislocation slip, with 1/2$ \left\langle{111}\right\rangle $ dislocations being the dominant type. When the strain rate increases to 1010 s–1, the yield strength of the alloy is significantly enhanced, accompanied by a notable increase in the proportion of amorphous or disordered structures, indicating that high strain rate loading suppresses dislocation nucleation and motion while promoting disordering transitions. Simulations at varying temperatures indicate that the alloy maintains a high strength level even at temperatures as high as 2100 K. Compositional analysis further indicates that increasing the atomic percentage of Nb or Ta effectively enhances the yield strength of the alloy, whereas an increase in Ti or Zr content adversely affects the strength. By combining MLP with MD methods, this study elucidates the anisotropic characteristics of the mechanical behavior and the strain rate dependence of disordering transitions in the NbTaTiZr RMPEA under combination of high strain rate and high temperature, providing an important theoretical basis and simulation foundation for optimizing and designing novel material under extreme environments.
      Corresponding author: CHEN Bo, chenbochain@nudt.edu.cn ; DAI Jiayu, jydai@nudt.edu.cn
    • Funds: Project supported by the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026).
    [1]

    Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758Google Scholar

    [2]

    Senkov O N, Scott J M, Senkova S V, Miracle D B, Woodward C F 2011 J. Alloys Compd. 509 6043Google Scholar

    [3]

    Senkov O N, Senkova S V, Woodward C, Miracle D B 2013 Acta Mater. 61 1545Google Scholar

    [4]

    Li X G, Chen C, Zheng H, Zuo Y X, Ong S Y P 2020 npj Comput. Mater. 6 10Google Scholar

    [5]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [6]

    Senkov O N, Scott J M, Senkova S V, Meisenkothen F, Miracle D B, Woodward C F 2012 J. Mater. Sci. 47 4062Google Scholar

    [7]

    Shittu J, Rietema C J, Juhasz M, Ellyson B, Elder K L M, Bocklund B J, Sims Z C, Li T T, Henderson H B, Berry J 2024 J. Alloys Compd. 977 11Google Scholar

    [8]

    郭孜涵, 陈闯, 涂益良, 唐恩凌 2024 高压物理学报 38 102

    Guo Z H, Chen C, Tu Y L, Tang E L 2024 Chin. J. High Pressure Phys. 38 102

    [9]

    罗小平, 李绪海, 唐泽明, 李治国, 陈森, 王媛, 俞宇颖, 胡建波 2024 高压物理学报 38 064101

    Luo X P, Li X H, Tang Z M, Li Z G, Chen S, Wang Y, Yu Y Y, Hu J B 2024 Chin. J. High Pressure Phys. 38 064101

    [10]

    Xiang T, Cai Z Y, Du P, Li K, Zhang Z W, Xie G Q 2021 J. Mater. Sci. Technol 90 150Google Scholar

    [11]

    Wang H, Niu Z Y, Chen C G, Chen H Q, Zhu X Y, Zhou F, Zhang X B, Liu X J, Wu Y, Jiang S H 2022 Mater. Charact. 193 112265Google Scholar

    [12]

    Wu Y N, Zhang Y, Li Z Y, Liu Z, Zhao E J, Liu J S 2024 J. Mater. Res. Technol. 30 8854Google Scholar

    [13]

    Wang R X, Tang Y, Li S, Zhang H, Ye Y C, Zhu L A, Ai Y L, Bai S X 2019 Mater. Des. 162 256Google Scholar

    [14]

    王睿鑫 2018 硕士学位论文 (长沙: 国防科技大学)

    Wang R X 2018 M.S. Thesis (Changsha: National University of Defense Technology

    [15]

    Wang R X, Tang Y, Li S, Ai Y L, Li Y Y, Xiao B, Zhu L A, Liu X Y, Bai S X 2020 J. Alloys Compd. 825 154099Google Scholar

    [16]

    Lo K, Murakami H, Glatzel U, Yeh J, Gorsse S, Yeh A C 2022 Int. J. Refract. Met. Hard Mater 108 105918Google Scholar

    [17]

    刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰 2022 物理学报 71 037102Google Scholar

    Liu Z T, Chen B, Ling W D, Bao N Y, Kang D D, Dai J Y 2022 Acta Phys. Sin. 71 037102Google Scholar

    [18]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [19]

    Zhou X Y, Wu H H, Wu Y, Liu X J, Peng X Y, Hou S, Lu Z P 2024 Acta Mater. 281 120364Google Scholar

    [20]

    李甲, 冯慧, 陈阳, 李理, 田圆圆, 谭福盛, 彭静, 陈浩天, 方棋洪 2020 固体力学学报 41 16

    Li J, Feng H, Chen Y, Li L, Tian Y Y, Tan F S, Peng J, Chen H T, Fang Q H 2020 Chin. J. Solid Mech. 41 16

    [21]

    Ferrari A, Körmann F, Asta M, Neugebauer J 2023 Nat. Comput. Sci. 3 221Google Scholar

    [22]

    Wen T Q, Zhang L F, Wang H, Weinan E, Srolovitz D J 2022 Mater. Futures 1 022601Google Scholar

    [23]

    Qiu R, Zeng Q Y, Han J S, Chen K, Kang D D, Yu X X, Dai J Y 2025 Phys. Rev. B 111 064103Google Scholar

    [24]

    Chang X J, Chen B, Zeng Q Y, Wang H, Chen K G, Tong Q C, Yu X X, Kang D D, Zhang S, Guo F Y, Hou Y, Zhao Z X, Yao Y S, Ma Y M, Dai J Y 2024 Nat. Commun. 15 8543Google Scholar

    [25]

    Chang X J, Kang D D, Chen B, Dai J Y 2025 Chin. Phys. Lett. 42 053704Google Scholar

    [26]

    Guo F Y, Chen B, Zeng Q Y, Yu X X, Chen K G, Kang D D, Du Y, Wu J H, Dai J Y 2023 J. Chem. Phys. 159 204702Google Scholar

    [27]

    Wu L P, Li T 2024 J. Mech. Phys. Solids 187 105639Google Scholar

    [28]

    Wang T Y, Li J Y, Wang M, Li C Z, Su Y Q, Xu S Q, Li X G 2024 npj Comput. Mater. 10 143Google Scholar

    [29]

    Xiao R L, Wang Q, Qin J Y, Zhao J F, Ruan Y, Wang H P, Li H, Wei B 2023 J. Appl. Phys. 133 085102Google Scholar

    [30]

    Zhang Y Z, Wang H D, Chen W J, Zeng J Z, Zhang L F, Wang H, Weinan E 2019 Comput. Phys. Commun. 253 107206Google Scholar

    [31]

    Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, Dai J Y 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [32]

    Han J, Zeng Q Y, Chen K, Yu X, Dai J Y 2023 Nanomaterials 13 1576Google Scholar

    [33]

    曾启昱, 陈博, 康冬冬, 戴佳钰 2023 物理学报 72 187102Google Scholar

    Zeng Q Y, Chen B, Kang D D, Dai J Y 2023 Acta Phys. Sin. 72 187102Google Scholar

    [34]

    高天雨, 曾启昱, 陈博, 康冬冬, 戴佳钰 2024 金属学报 60 1439

    Gao T Y, Zeng Q Y, Chen B, Kang D D, Dai J Y 2024 Acta Metall. Sin. 60 1439

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [39]

    Zeng J Z, Zhang D, Lu D H, et al. 2023 J. Chem. Phys. 159 054801Google Scholar

    [40]

    Zhang D, Bi H R, Dai F Z, Jiang W R, Liu X Z, Zhang L F, Wang H 2024 npj Comput. Mater. 10 94Google Scholar

    [41]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 Comput. Phys. Commun. 267 108033Google Scholar

    [42]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [43]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021Google Scholar

    [44]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [45]

    Liu X R, Chang L, Ma T H, Zhou C Y 2023 Mater. Today Commun. 36 106523Google Scholar

    [46]

    Santos-Florez P A, Dai S C, Yao Y, Yanxon H, Li L, Wang Y J, Zhu Q, Yu X X 2023 Acta Mater. 255 119041Google Scholar

    [47]

    Pan Y, Fu T, Duan M Y, Li C Y, Hu H, Peng X H 2024 ACS Appl. Nano Mater. 7 8121Google Scholar

    [48]

    Zhang Q, Huang R R, Zhang X, Cao T Q, Xue Y F, Li X Y 2021 Nano Lett. 21 3671Google Scholar

    [49]

    Hu Y Q, Ding S H, Xu J F, Zhang Y H, Wu W W, Xia R 2023 J. Mater. Res. Technol. 25 285Google Scholar

    [50]

    Wu Y C, Shao J L 2023 Int. J. Plast. 169 103730Google Scholar

    [51]

    Wang Q, Gong J H, Chen W Q, Tian Y 2024 Mater. Today Commun. 38 108187Google Scholar

    [52]

    Wang J, Ma Q L, Cheng H P, Yu H C, Zhang S X, Shang H C, Zhang G Q, Wang W B 2023 Materials 16 5126Google Scholar

    [53]

    Jiang J, Chen P W, Qiu J L, Sun W F, Saikov I, Shcherbakov V, Alymov M 2021 Mater. Today Commun. 28 102525Google Scholar

    [54]

    李健, 郭晓璇, 马胜国, 李志强, 辛浩 2021 高压物理学报 35 9

    Li J, Guo X X, Ma S G, Li Z Q, Xin H 2021 Chin. J. High Pressure Phys. 35 9

  • 图 1  32原子超胞 (a) BCC; (b) FCC; (c) HCP结构示意图

    Figure 1.  Schematic of 32-atom supercell: (a) BCC; (b) FCC; (c) HCP structure.

    图 2  训练集中(a)单原子能量、(b)受力、(c)维里应力的分布; DP和DFT在(d)能量、(e)受力、(f)维里应力预测值的相关性

    Figure 2.  (a) Atomic energy, (b) forces, (c) distribution of virial stress; correlation between DP and DFT for (d) energy, (e) forces and (f) virial stress.

    图 3  在300 K, 109 s–1条件下, NbTaTiZr沿[100]晶向压缩的各性质随压缩应变的变化规律 (a) 压缩应力; (b) 能量和体积; (c) 位错密度; (d) 相结构. (e) 不同应变下的径向分布函数

    Figure 3.  Evolution of properties for NbTaTiZr under uniaxial compression along the [100] crystalline orientation as a function of compressive strain at 300 K and a strain rate of 109 s–1: (a) Compressive stress; (b) energy and volume; (c) dislocation density; (d) phase structure. (e) Radial distribution functions at different strain levels.

    图 4  300 K, 109 s–1沿[100]晶向压缩结构时, 应变分别为15.78%, 15.96%, 17.27%, 24.16%, 30%时的位错密度(a1)—(e1)和相结构分布(a2)—(e2). 蓝色代表BCC, 红色代表HCP, 绿色代表FCC, 灰色代表其他结构

    Figure 4.  Dislocation density (a1)–(e1) and phase structure distribution (a2)–(e2) in NbTaTiZr under uniaxial compression along the [100] orientation at 300 K and a strain rate of 109 s–1, shown at compressive strains of 15.78%, 15.96%, 17.27%, 24.16%, and 30%. Blue represents BCC, red represents HCP, green represents FCC, and grey represents other structures.

    图 5  沿不同晶向压缩的应力应变曲线(a), (b)和相结构的变化规律(c), (d) (a), (c) 沿[110]晶向; (b), (d) 沿[111]晶向

    Figure 5.  Stress-strain curves (a), (b) and structural evolution (c), (d) under uniaxial compression along the different orientations: (a), (c) [110] orientations; (b), (d) [111] orientations.

    图 6  300 K, 109 s–1条件下沿[110]晶向压缩, 应变不同时的原子结构(a1)—(a4)和剪应变分布(b1)—(b4) (a1), (b1) 8.3%; (a2), (b2) 8.6%; (a3), (b3) 8.9%; (a4), (b4) 14.9%

    Figure 6.  Atomic structures (a1)—(a4) and shear strain distribution (b1)—(b4) in NbTaTiZr under uniaxial compression along the [110] orientation at 300 K and 109 s–1 for varying strains: (a1), (b1) 8.3%; (a2), (b2) 8.6%; (a3), (b3) 8.9%; (a4), (b4) 14.9%.

    图 7  300 K, 109 s–1沿[111]晶向压缩结构时, 应变分别为16.7%, 17.4%, 18.7%, 24%, 30%时的位错密度(a1)—(e1)和相结构分布(a2)—(e2), 其中蓝色代表BCC, 红色代表HCP, 绿色代表FCC, 灰色代表其他结构 (a1), (a2) 16.7%; (b1), (b2) 17.4%; (c1), (c2) 18.7%; (d1), (d2) 24%; (e1), (e2) 30%

    Figure 7.  Dislocation density (a1)–(e1) and phase structure distribution (a2)–(e2) in NbTaTiZr under uniaxial compression along the [111] orientation at 300 K and a strain rate of 109 s–1 for varying strains, and blue represents BCC, red represents HCP, green represents FCC, and grey represents other structures: (a1), (a2) 16.7%; (b1), (b2) 17.4%; (c1), (c2) 18.7%; (d1), (d2) 24%; (e1), (e2) 30%.

    图 8  (a), (b) 108 s–1和1010 s–1应变率下的应力应变曲线和位错密度; (c), (d) 108 s–1和1010 s–1应变率下相比例随应变的变化

    Figure 8.  (a), (b) Stress-strain curves and dislocation density at strain rates of 108 s–1 and 1010 s–1; (c), (d) phase proportion versus strain at 108 s–1 and 1010 s–1.

    图 9  [100], [110]和[111]晶向在108 s–1, 109 s–1, 1010 s–1应变率条件下的屈服强度(a)和无序结构比例(b); 108 s–1, 1010 s–1应变率条件下[110]晶向(c)和 [111]晶向(d)的位错密度随应变的变化

    Figure 9.  Yield strength (a) and disordered structure proportion (b) under [100], [110], and [111] crystal orientations at strain rates of 108 s–1, 109 s–1, and 1010 s–1; dislocation density versus strain for [110] orientation (c) and [111] orientation (d) at strain rates of 108 s–1 and 1010 s–1.

    图 10  应变为28%时, 位错组态在应变率108 s–1 (a1)—(a3)和1010 s–1 (b1)—(b3)下的分布, 灰色原子表示无序原子 (a1), (b1) [100]晶向; (a2), (b2) [110]晶向; (a3), (b3) [111]晶向

    Figure 10.  Dislocation configurations at 28% strain under strain rates of 108 s–1 (a1)–(a3) and 1010 s–1 (b1)–(b3), and the gray atoms indicate disordered atomic configurations: (a1), (b1) [100] crystallographic orientations; (a2), (b2) [110] crystallographic orientations; (a3), (b3) [111] crystallographic orientations.

    图 11  不同元素含量的压缩应力应变曲线 (a) Nb, (b) Ta, (c) Ti, (d) Zr

    Figure 11.  Compressive stress-strain curves for different content of element: (a) Nb, (b) Ta, (c) Ti, (d) Zr.

    图 12  300—2100 K温度范围内改变单一元素含量对屈服强度的影响 (a) Nb; (b) Ta; (c) Ti; (d) Zr

    Figure 12.  Effects of varying the content of a single element on yield strength across the 300—2100 K temperature range: (a) Nb; (b) Ta; (c) Ti; (d) Zr.

    表 1  DP模型预测值和DFT计算结与实验值的比较

    Table 1.  Comparison of DP model predictions with DFT calculations and experimental values.

    Method Tm/K C11/GPa C12/GPa C44/GPa B/GPa G/GPa μ
    NbTaTiZr DP 2361 170 129 30 142 32 0.43
    Exp/DFT 2440 (3.2%)
    179 (5.0%)
    134 (3.7%)
    33 (10%)
    151 (6.0%)
    27 (18.5%)
    0.42 (2.4%)
    DownLoad: CSV
  • [1]

    Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758Google Scholar

    [2]

    Senkov O N, Scott J M, Senkova S V, Miracle D B, Woodward C F 2011 J. Alloys Compd. 509 6043Google Scholar

    [3]

    Senkov O N, Senkova S V, Woodward C, Miracle D B 2013 Acta Mater. 61 1545Google Scholar

    [4]

    Li X G, Chen C, Zheng H, Zuo Y X, Ong S Y P 2020 npj Comput. Mater. 6 10Google Scholar

    [5]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [6]

    Senkov O N, Scott J M, Senkova S V, Meisenkothen F, Miracle D B, Woodward C F 2012 J. Mater. Sci. 47 4062Google Scholar

    [7]

    Shittu J, Rietema C J, Juhasz M, Ellyson B, Elder K L M, Bocklund B J, Sims Z C, Li T T, Henderson H B, Berry J 2024 J. Alloys Compd. 977 11Google Scholar

    [8]

    郭孜涵, 陈闯, 涂益良, 唐恩凌 2024 高压物理学报 38 102

    Guo Z H, Chen C, Tu Y L, Tang E L 2024 Chin. J. High Pressure Phys. 38 102

    [9]

    罗小平, 李绪海, 唐泽明, 李治国, 陈森, 王媛, 俞宇颖, 胡建波 2024 高压物理学报 38 064101

    Luo X P, Li X H, Tang Z M, Li Z G, Chen S, Wang Y, Yu Y Y, Hu J B 2024 Chin. J. High Pressure Phys. 38 064101

    [10]

    Xiang T, Cai Z Y, Du P, Li K, Zhang Z W, Xie G Q 2021 J. Mater. Sci. Technol 90 150Google Scholar

    [11]

    Wang H, Niu Z Y, Chen C G, Chen H Q, Zhu X Y, Zhou F, Zhang X B, Liu X J, Wu Y, Jiang S H 2022 Mater. Charact. 193 112265Google Scholar

    [12]

    Wu Y N, Zhang Y, Li Z Y, Liu Z, Zhao E J, Liu J S 2024 J. Mater. Res. Technol. 30 8854Google Scholar

    [13]

    Wang R X, Tang Y, Li S, Zhang H, Ye Y C, Zhu L A, Ai Y L, Bai S X 2019 Mater. Des. 162 256Google Scholar

    [14]

    王睿鑫 2018 硕士学位论文 (长沙: 国防科技大学)

    Wang R X 2018 M.S. Thesis (Changsha: National University of Defense Technology

    [15]

    Wang R X, Tang Y, Li S, Ai Y L, Li Y Y, Xiao B, Zhu L A, Liu X Y, Bai S X 2020 J. Alloys Compd. 825 154099Google Scholar

    [16]

    Lo K, Murakami H, Glatzel U, Yeh J, Gorsse S, Yeh A C 2022 Int. J. Refract. Met. Hard Mater 108 105918Google Scholar

    [17]

    刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰 2022 物理学报 71 037102Google Scholar

    Liu Z T, Chen B, Ling W D, Bao N Y, Kang D D, Dai J Y 2022 Acta Phys. Sin. 71 037102Google Scholar

    [18]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [19]

    Zhou X Y, Wu H H, Wu Y, Liu X J, Peng X Y, Hou S, Lu Z P 2024 Acta Mater. 281 120364Google Scholar

    [20]

    李甲, 冯慧, 陈阳, 李理, 田圆圆, 谭福盛, 彭静, 陈浩天, 方棋洪 2020 固体力学学报 41 16

    Li J, Feng H, Chen Y, Li L, Tian Y Y, Tan F S, Peng J, Chen H T, Fang Q H 2020 Chin. J. Solid Mech. 41 16

    [21]

    Ferrari A, Körmann F, Asta M, Neugebauer J 2023 Nat. Comput. Sci. 3 221Google Scholar

    [22]

    Wen T Q, Zhang L F, Wang H, Weinan E, Srolovitz D J 2022 Mater. Futures 1 022601Google Scholar

    [23]

    Qiu R, Zeng Q Y, Han J S, Chen K, Kang D D, Yu X X, Dai J Y 2025 Phys. Rev. B 111 064103Google Scholar

    [24]

    Chang X J, Chen B, Zeng Q Y, Wang H, Chen K G, Tong Q C, Yu X X, Kang D D, Zhang S, Guo F Y, Hou Y, Zhao Z X, Yao Y S, Ma Y M, Dai J Y 2024 Nat. Commun. 15 8543Google Scholar

    [25]

    Chang X J, Kang D D, Chen B, Dai J Y 2025 Chin. Phys. Lett. 42 053704Google Scholar

    [26]

    Guo F Y, Chen B, Zeng Q Y, Yu X X, Chen K G, Kang D D, Du Y, Wu J H, Dai J Y 2023 J. Chem. Phys. 159 204702Google Scholar

    [27]

    Wu L P, Li T 2024 J. Mech. Phys. Solids 187 105639Google Scholar

    [28]

    Wang T Y, Li J Y, Wang M, Li C Z, Su Y Q, Xu S Q, Li X G 2024 npj Comput. Mater. 10 143Google Scholar

    [29]

    Xiao R L, Wang Q, Qin J Y, Zhao J F, Ruan Y, Wang H P, Li H, Wei B 2023 J. Appl. Phys. 133 085102Google Scholar

    [30]

    Zhang Y Z, Wang H D, Chen W J, Zeng J Z, Zhang L F, Wang H, Weinan E 2019 Comput. Phys. Commun. 253 107206Google Scholar

    [31]

    Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, Dai J Y 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [32]

    Han J, Zeng Q Y, Chen K, Yu X, Dai J Y 2023 Nanomaterials 13 1576Google Scholar

    [33]

    曾启昱, 陈博, 康冬冬, 戴佳钰 2023 物理学报 72 187102Google Scholar

    Zeng Q Y, Chen B, Kang D D, Dai J Y 2023 Acta Phys. Sin. 72 187102Google Scholar

    [34]

    高天雨, 曾启昱, 陈博, 康冬冬, 戴佳钰 2024 金属学报 60 1439

    Gao T Y, Zeng Q Y, Chen B, Kang D D, Dai J Y 2024 Acta Metall. Sin. 60 1439

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [39]

    Zeng J Z, Zhang D, Lu D H, et al. 2023 J. Chem. Phys. 159 054801Google Scholar

    [40]

    Zhang D, Bi H R, Dai F Z, Jiang W R, Liu X Z, Zhang L F, Wang H 2024 npj Comput. Mater. 10 94Google Scholar

    [41]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 Comput. Phys. Commun. 267 108033Google Scholar

    [42]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [43]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021Google Scholar

    [44]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007Google Scholar

    [45]

    Liu X R, Chang L, Ma T H, Zhou C Y 2023 Mater. Today Commun. 36 106523Google Scholar

    [46]

    Santos-Florez P A, Dai S C, Yao Y, Yanxon H, Li L, Wang Y J, Zhu Q, Yu X X 2023 Acta Mater. 255 119041Google Scholar

    [47]

    Pan Y, Fu T, Duan M Y, Li C Y, Hu H, Peng X H 2024 ACS Appl. Nano Mater. 7 8121Google Scholar

    [48]

    Zhang Q, Huang R R, Zhang X, Cao T Q, Xue Y F, Li X Y 2021 Nano Lett. 21 3671Google Scholar

    [49]

    Hu Y Q, Ding S H, Xu J F, Zhang Y H, Wu W W, Xia R 2023 J. Mater. Res. Technol. 25 285Google Scholar

    [50]

    Wu Y C, Shao J L 2023 Int. J. Plast. 169 103730Google Scholar

    [51]

    Wang Q, Gong J H, Chen W Q, Tian Y 2024 Mater. Today Commun. 38 108187Google Scholar

    [52]

    Wang J, Ma Q L, Cheng H P, Yu H C, Zhang S X, Shang H C, Zhang G Q, Wang W B 2023 Materials 16 5126Google Scholar

    [53]

    Jiang J, Chen P W, Qiu J L, Sun W F, Saikov I, Shcherbakov V, Alymov M 2021 Mater. Today Commun. 28 102525Google Scholar

    [54]

    李健, 郭晓璇, 马胜国, 李志强, 辛浩 2021 高压物理学报 35 9

    Li J, Guo X X, Ma S G, Li Z Q, Xin H 2021 Chin. J. High Pressure Phys. 35 9

  • [1] LI Zhishuo, CAO Xinrui, WU Shunqing, WU Jianyang, WEN Yuhua, ZHU Zizhong. First-principles study of mechanical properties of Janus monolayer MoSSe under uniaxial tensile strains at different chiral angles. Acta Physica Sinica, 2025, 74(16): 166201. doi: 10.7498/aps.74.20250437
    [2] SONG Qianqian, ZHANG Bozhao, DING Jun. Computational simulation of atomic strain in body-centered cubic multi-principal element alloys. Acta Physica Sinica, 2025, 74(8): 086102. doi: 10.7498/aps.74.20250128
    [3] XIONG Haozhi, WANG Yunjiang. Kinetic simulation of phase diagram and phase transitions in NiCoCr multi-principal element alloy at high temperature and high pressure. Acta Physica Sinica, 2025, 74(8): 086101. doi: 10.7498/aps.74.20250097
    [4] Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu. First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure. Acta Physica Sinica, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [5] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [6] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [7] Hu Xue-Lan, Lu Rui-Zhi, Wang Zhi-Long, Wang Ya-Ru. First-principles study on effect of Re on micro structure and mechanical properties of Ni3Al intermetallics. Acta Physica Sinica, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [8] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [9] Wang Peng, Xu Jian-Gang, Zhang Yun-Guang, Song Hai-Yang. Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal -Fe. Acta Physica Sinica, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [10] Wang Xue-Fei, Ma Jing-Jie, Jiao Zhao-Yong, Zhang Xian-Zhou. Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1-x)C2 solid solutions. Acta Physica Sinica, 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [11] Wang Xiao-Yuan, Zhao Feng-Peng, Wang Jie, Yan Ya-Bin. First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Acta Physica Sinica, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [12] Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei. First-principles calculations of the mechanical properties of IrB and IrB2. Acta Physica Sinica, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [13] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [14] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study of the uniaxial compressive strength of bct-C4 carbon allotrope. Acta Physica Sinica, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [15] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study on the structure and mechanical properties of hcp-C3 carbon bulk ring. Acta Physica Sinica, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [16] Li De-Hua, Su Wen-Jin, Zhu Xiao-Ling. First-principles calculations for the mechanical properties of BC5. Acta Physica Sinica, 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [17] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] Li De-Hua, Zhu Xiao-Ling, Su Wen-Jin, Cheng Xin-Lu. First-principles calculations for the structure and mechanical properties of PtN2. Acta Physica Sinica, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [19] Zhang Yang, Zhang Jian-Hua, Wen Yu-Hua, Zhu Zi-Zhong. The deformation mechanism of nanofilm with void under tensile loading: An atomistic simulation study. Acta Physica Sinica, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [20] Ding Ying-Chun, Xu Ming, Pan Hong-Zhe, Shen Yi-Bin, Zhu Wen-Jun, He Hong-Liang. Electronic structure and physical properties of γ-Si3N4 under high pressure. Acta Physica Sinica, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
Metrics
  • Abstract views:  280
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2025
  • Accepted Date:  09 August 2025
  • Available Online:  09 September 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回