Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of neutron energy spectrum, fluence and single event effects of atmospheric neutron irradiation spectrometer at China spallation neutron source

HU Zhiliang MO Lihua ZHOU Bin YI Tiancheng LI Mengchao ZHAO Qi LIANG Tianjiao

Citation:

Evaluation of neutron energy spectrum, fluence and single event effects of atmospheric neutron irradiation spectrometer at China spallation neutron source

HU Zhiliang, MO Lihua, ZHOU Bin, YI Tiancheng, LI Mengchao, ZHAO Qi, LIANG Tianjiao
cstr: 32037.14.aps.74.20250975
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The neutron energy spectrum and fluence of the atmospheric neutron irradiation spectrometer at China Spallation Neutron Source cover the energy range from meV to GeV. The evaluation of the neutron energy spectrum and fluence in an energy region above 1 MeV is of great significance for studying single event effect of atmospheric neutrons. Due to the limitations of the proton beam time structure of the CSNS and the engineering reality of the ANIS, it is impossible to achieve the neutron energy spectrum and fluence above 1 MeV through absolute measurements. Therefore, it is necessary to adopt a combination of theoretical simulations and partial experiments to provide reference values. This work covers the following aspects. 1) Based on the measured neutron energy spectrum data from the ICE beamline at LANSCE WNR, the physical models, tally types, and cross-section data files suitable for the calculation of high energy neutron energy spectra and fluence are explored using MCNPX2.5.0; 2) A secondary source with energy distribution, angular distribution, and spatial distribution for neutron energy spectrum and fluence evaluation is developed and verified. 3) Using the obtained neutron energy spectrum and fluence and the combination of existing facilities and JSED89A reference neutron energy spectrum, the performance of the ANIS facility is evaluated from the perspectives of spectrum shape and radiation effect. 4) An experiment on neutron induced single-event upset cross-section measurement of configuration memory on Xilinx 2nd generation FPGAs is conducted using the ANIS. The results are consistent with test results of the same chip series on similar international facilities.In summary, it can be concluded that the ANIS at CSNS may be the facility with the neutron energy spectrum closest to the natural atmospheric neutron energy spectrum among similar facilities in the world, and it has also been confirmed that the test results of ANIS from CSNS show excellent consistency with results obtained from other facilities. Therefore, the research results on atmospheric neutron single-particle effects and engineering acceleration tests based on ANIS at CSNS can be directly applied to high-reliability fields such as aviation, aerospace, military, and civil, contributing to the development of new quality productive forces.
      Corresponding author: HU Zhiliang, huzl@ihep.ac.cn ; LIANG Tianjiao, tjliang@ihep.ac.cn
    [1]

    陈伟, 郭晓强, 宋朝晖 2022 中子单粒子效应(北京: 科学出版社)第5—11页

    Chen W, Guo X Q, Song Z H 2022 Neutron Single Event Effects (Beijing: Science Press) pp5–11

    [2]

    Ziegler J F 1996 IBM J. Res. Dev. 40 19Google Scholar

    [3]

    孙雅, 刘国福, 罗晓亮 2014 国防科技 35 24Google Scholar

    Sun Y, Liu G F, Luo X L 2014 National Defense Sci. Technol. 35 24Google Scholar

    [4]

    Normand E 1996 IEEE Trans Nucl Sci. 43 461Google Scholar

    [5]

    ATSB Transport Safety Report: In-flight Upset 154 km West of Learmonth, WA 2008 http://www.airsafe.com/plane-crash/atsb-qantas-a330-interim-report1.pdf [2025-07-22]

    [6]

    Suzanne F N, Stephen A W, Michael M 2017 Physics Procedia 90 374Google Scholar

    [7]

    Ansell S, Frost C D 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 pp1–4

    [8]

    Yu Q Z, Shen F, Yuan L B, Lin L, Hu Z L, Zhou B, Liang T J 2022 Nucl. Eng. Des. 386 111579Google Scholar

    [9]

    IEC 2016 Process Management for Avionics-atmospheric Radiation Effects, part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects Within Avionic Electronic Equip-ment: IEC 62396-1

    [10]

    Denise B P 2005 LA-CP-05-0369, Los Alamos National Laboratory

    [11]

    Steve W 2019 LA-UR 19-30813, Los Alamos National Laboratory

    [12]

    Balestrini S, Brown A, Haight R C, Laymon C M, Lee T M, Lisowski P W, McCorkle W, Nelson R O, Parker W 1993 NIM-A 336 226Google Scholar

    [13]

    Hidenori I, Gentaro F, Hirotaka S, Takashi K, Michihiro F, Stephen A W 2020 IEEE Trans. Nucl. Sci. 67 2363Google Scholar

    [14]

    ICE House at LANSCE https://lansce.lanl.gov/facilities/Radiation%20Effects/ICE%20House-FP30L.php[2025-07-22]

    [15]

    IEC 2017 Process Management for Avionics-atmospheric Radiation Effects-Part 2 Guidelines for Single Event Effects Testing for Avionics Systems. IEC 62396-2

    [16]

    Alexander V P, Jan B, Mitja M, Ralf N, Stefan R, Simon P P 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp166–173

    [17]

    Ewart W B 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp157–160

    [18]

    胡志良 2023 博士学位论文 (西安: 西安交通大学)

    Hu Z L 2023 Ph. D. Dissertation (Xi’an: Xi’an JiaoTong University

    [19]

    Austin L 2009 White Paper: Virtex and Spartan FPGA Families, WP286

    [20]

    Autran J L, Munteanua D, Moindjie S, Saoud T S, Sauze S, Gasiot G, Roche P 2015 Microelectron. Reliab. 55 1506Google Scholar

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl Sci. 66 1368Google Scholar

    [22]

    Device vice Reliability Report (UG116) https://docs.amd.com/r/en-US/ug116 [2025-07-22]

  • 图 1  WNR-ICE MCNPX计算模型

    Figure 1.  WNR-ICE MCNPX model.

    图 2  WNR 15°中子能谱谱型结果对比

    Figure 2.  Comparison of WNR 15° neutron energy spectrum results.

    图 3  WNR 15°不同截面能量上限中子能谱计算结果对比

    Figure 3.  Comparison of calculated neutron energy spectra at WNR 15° angle with different upper limits of energy for cross-sections.

    图 4  WNR 15°中子能谱与MCNPX不同模型计算结果对比

    Figure 4.  Comparison of calculated neutron energy spectra at WNR 15° angle with different physical model of spallation reaction.

    图 5  WNR ICE-HOUSE实测中子能谱与MCNPX不同模型计算结果对比

    Figure 5.  Comparison of measured neutron energy spectra of ICE-HOUSE with calculation by different physical model in MCNPX.

    图 6  基于TMR模型的ANIS引出孔道En ≥ 10 MeV中子注量评估模型和空间分布 (a) MCNPX ANIS源项评估计算模型; (b) En ≥ 10 MeV中子注量空间分布

    Figure 6.  Source term assessment model and spatial distribution of neutron flux with En ≥ 10 MeV of ANIS based on CSNS-TMR: (a) Source term assessment model of ANIS in MCNPX; (b) spatial distribution of neutron flux with En ≥ 10 MeV.

    图 7  ANIS简化版MCNPX模型

    Figure 7.  ANIS simplified MCNPX model.

    图 8  二次中子源项的空间分布校验

    Figure 8.  Verification of the spatial distribution of the secondary neutron source term.

    图 9  CSNS ANIS与航空大气中子能谱对比

    Figure 9.  Comparison of CSNS ANIS neutron spectra with avionics neutron spectra.

    图 10  归一化后不同装置和地面参考大气中子的中子勒谱

    Figure 10.  Neutron spectra of different facilities and ground reference atmospheric neutrons after normalization.

    图 11  XC2 V3000测试现场

    Figure 11.  XC2 V3000 test site.

    表 1  大气中子能谱占比[15] (单位: %)

    Table 1.  Spectral distribution of atmospheric neutron energies (in %)[15].

    1—10 MeV10—100 MeV>100 MeV
    IEC 62396-1353529
    JESD89 A353530
    QARM (model)403624
    LANSCE WNR522622
    TRIUMF TNF245421
    CSNS ANIS353530
    DownLoad: CSV

    表 2  各装置相对于JESD89A参考大气中子引起的辐射效应差异对比

    Table 2.  Comparison of the differences in radiation effects caused by atmospheric neutrons in various facilities reference JESD89A.

    装置名称 ANTIA LANSCE TRUIMF ChipIR ANIS
    辐射效应
    差异$ \varepsilon $/%
    –59 –26 –16 –25 –2
    DownLoad: CSV

    表 3  Xilinx-II系列FPGA不同装置测试结果[19]

    Table 3.  Test results of Xilinx-II series FPGA on different devices[19].

    装置简称 翻转截面/(cm2·bit–1) (误差) 备注
    LANSCE 2.56 × 10–14 (±10%) XC2V6000
    ISIS 4.35 × 10–14 (±5%) XC2V6000
    ANITA 5.25 × 10–14 (±7.5%) XC2V6000
    ANIS 3.47 × 10–14 (±8%) XC2V3000
    DownLoad: CSV
  • [1]

    陈伟, 郭晓强, 宋朝晖 2022 中子单粒子效应(北京: 科学出版社)第5—11页

    Chen W, Guo X Q, Song Z H 2022 Neutron Single Event Effects (Beijing: Science Press) pp5–11

    [2]

    Ziegler J F 1996 IBM J. Res. Dev. 40 19Google Scholar

    [3]

    孙雅, 刘国福, 罗晓亮 2014 国防科技 35 24Google Scholar

    Sun Y, Liu G F, Luo X L 2014 National Defense Sci. Technol. 35 24Google Scholar

    [4]

    Normand E 1996 IEEE Trans Nucl Sci. 43 461Google Scholar

    [5]

    ATSB Transport Safety Report: In-flight Upset 154 km West of Learmonth, WA 2008 http://www.airsafe.com/plane-crash/atsb-qantas-a330-interim-report1.pdf [2025-07-22]

    [6]

    Suzanne F N, Stephen A W, Michael M 2017 Physics Procedia 90 374Google Scholar

    [7]

    Ansell S, Frost C D 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 pp1–4

    [8]

    Yu Q Z, Shen F, Yuan L B, Lin L, Hu Z L, Zhou B, Liang T J 2022 Nucl. Eng. Des. 386 111579Google Scholar

    [9]

    IEC 2016 Process Management for Avionics-atmospheric Radiation Effects, part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects Within Avionic Electronic Equip-ment: IEC 62396-1

    [10]

    Denise B P 2005 LA-CP-05-0369, Los Alamos National Laboratory

    [11]

    Steve W 2019 LA-UR 19-30813, Los Alamos National Laboratory

    [12]

    Balestrini S, Brown A, Haight R C, Laymon C M, Lee T M, Lisowski P W, McCorkle W, Nelson R O, Parker W 1993 NIM-A 336 226Google Scholar

    [13]

    Hidenori I, Gentaro F, Hirotaka S, Takashi K, Michihiro F, Stephen A W 2020 IEEE Trans. Nucl. Sci. 67 2363Google Scholar

    [14]

    ICE House at LANSCE https://lansce.lanl.gov/facilities/Radiation%20Effects/ICE%20House-FP30L.php[2025-07-22]

    [15]

    IEC 2017 Process Management for Avionics-atmospheric Radiation Effects-Part 2 Guidelines for Single Event Effects Testing for Avionics Systems. IEC 62396-2

    [16]

    Alexander V P, Jan B, Mitja M, Ralf N, Stefan R, Simon P P 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp166–173

    [17]

    Ewart W B 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp157–160

    [18]

    胡志良 2023 博士学位论文 (西安: 西安交通大学)

    Hu Z L 2023 Ph. D. Dissertation (Xi’an: Xi’an JiaoTong University

    [19]

    Austin L 2009 White Paper: Virtex and Spartan FPGA Families, WP286

    [20]

    Autran J L, Munteanua D, Moindjie S, Saoud T S, Sauze S, Gasiot G, Roche P 2015 Microelectron. Reliab. 55 1506Google Scholar

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl Sci. 66 1368Google Scholar

    [22]

    Device vice Reliability Report (UG116) https://docs.amd.com/r/en-US/ug116 [2025-07-22]

  • [1] Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang. Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures. Acta Physica Sinica, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [3] Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang. Neutron induced single event effects on near-memory computing architecture AI chips. Acta Physica Sinica, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [4] Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Liu Ye, Zhong Xiang-Li, Ouyang Xiao-Ping, Ding Li-Li, Lu Chao, Zhang Hong, Feng Ya-Hui. Simulation research on single event effect of N-well resistor. Acta Physica Sinica, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [5] Shen Rui-Xiang, Zhang Hong, Song Hong-Jia, Hou Peng-Fei, Li Bo, Liao Min, Guo Hong-Xia, Wang Jin-Bin, Zhong Xiang-Li. Numerical simulation of single-event effects in fully-depleted silicon-on-insulator HfO2-based ferroelectric field-effect transistor memory cell. Acta Physica Sinica, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [6] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [7] Han Jin-Hua, Qin Ying-Can, Guo Gang, Zhang Yan-Wen. A method of designing binary energy degrader. Acta Physica Sinica, 2020, 69(3): 033401. doi: 10.7498/aps.69.20191514
    [8] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] Li Pei, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Wang Xin, Zhang Jin-Xin. Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [11] Zhang Jin-Xin, He Chao-Hui, Guo Hong-Xia, Tang Du, Xiong Cen, Li Pei, Wang Xin. Three-dimensional simulation study of bias effect on single event effects of SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [12] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [13] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [14] Liu Bi-Wei, Chen Jian-Jun, Chen Shu-Ming, Chi Ya-Qin. NPN bipolar effect and its influence on charge sharing in a tripe well CMOS technology with n+ deep well. Acta Physica Sinica, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [15] Zhou Lin, Jiang Shi-Lun, Qi Jian-Min, Wang Li-Zong. Study of magnetic proton recoil technology for measurement of deuterium-tritium neutron spectrum. Acta Physica Sinica, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [16] Liu Fan-Yu, Liu Heng-Zhu, Liu Bi-Wei, Liang Bin, Chen Jian-Jun. Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology. Acta Physica Sinica, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [17] Cai Ming-Hui, Han Jian-Wei, Li Xiao-Yin, Li Hong-Wei, Zhang Zhen-Li. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [18] Zhong Guo-Qiang, Hu Li-Qun, Zhu Yu-Bao, Lin Shi-Yao, Chen Jue-Quan, Xu Ping, Duan Yan-Min, Lu Hong-Wei. Neutron flux measurement and analysis in the HT-7 deuterium plasma. Acta Physica Sinica, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [19] Zhang Yi, Li Yu-Tong, Zhang Jie, Chen Zheng-Lin, Kodama R.. Calculation of neutron spectrum in ultraintense laser-plasmas interactions. Acta Physica Sinica, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Experimental study on irradiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
Metrics
  • Abstract views:  469
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2025
  • Accepted Date:  11 August 2025
  • Available Online:  25 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回