Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Realizing giant valley polarization effect based on monolayer altermagnets

XIE Weifeng WANG Libo XU Xiong YUE Yunliang XIA Huayan HE Longhui WANG Hui

Citation:

Realizing giant valley polarization effect based on monolayer altermagnets

XIE Weifeng, WANG Libo, XU Xiong, YUE Yunliang, XIA Huayan, HE Longhui, WANG Hui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Stable and remarkable valley polarization effect is the key to utilizing valley degree of freedom in valleytronic devices. Recently, a novel collinear magnetic material known as altermagnet, distinct from ferromagnets and antiferromagnets, has attracted widespread attention. Theoretical studies have revealed that the monolayer altermagnet V2Se2O exhibits spin-valley locking induced by crystal symmetry rather than conventional time-reversal symmetry. Uniaxial strain can break the corresponding crystal symmetry, leading to a remarkable non-relativistic valley polarization effect. Therefore, beyond uniaxial strain, are there alternative strategies to break the crystal symmetry in altermagnets and achieve remarkable valley polarization? Based on firstprinciples calculations and symmetry analysis, we reveal that valley polarization effect in monolayer V2Se2O altermagnet is correlated with the net magnetic moment between magnetic atoms V under uniaxial strain, proposing two strategies for achieving giant valley polarization effect. Firstly, substituting one V atom in V2Se2O with Cr to construct a ferrimagnetic monolayer VCrSe2O enhances the net magnetic moment between magnetic atoms, thereby realizing giant valley polarization effect. Applying uniaxial strain along either the a-axis or b-axis significantly increases the value of valley polarization which exhibits a nearly linear relationship with the net magnetic moments between the magnetic atoms. Secondly, constructing a van der Waals heterostructure composed of V2Se2O and α-SnO monolayers breaks mirror symmetry, as a result, inducing a net magnetic moment, which in turn induces remarkable valley polarization effect. Compressing the interlayer distance of the heterostructure enables an increment of the net magnetic moment between V atoms, enhancing the value of valley polarization to nearly 400 meV. This work reveals that valley polarization in monolayer altermagnets is correlated with the net magnetic moment between magnetic atoms. Then, we propose two strategies to achieve giant valley polarization based on monolayer altermagnets, providing theoretical guidance for the potential applications of ferrimagnetic monolayers and heterostructures constructed from altermagnets in valleytronics.
  • [1]

    Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X 2020 Nat. Nanotechnol. 15 743

    [2]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 (in Chinese) [孙真昊,管鸿明,付雷,沈波,唐宁 2021 物理学报 70 027302]

    [3]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055

    [4]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [5]

    Xu X, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [6]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401

    [7]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, Van Der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804

    [8]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148

    [9]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141

    [10]

    Peng R, Ma Y, Zhang S, Huang B, Dai Y 2018 J Phys. Chem. Lett. 9 3612

    [11]

    Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z, Gao W, Liu Z, Zhou W 2020 Adv. Mater. 32 1906536

    [12]

    Matsuoka H, Habe T, Iwasa Y, Koshino M, Nakano M 2022 Nat. Commun. 13 5129

    [13]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187

    [14]

    Abdollahi M, Tagani M B 2023 Phys. Rev. B 108 024427

    [15]

    Zhang W, Zhu H, Zhang W, Wang J, Zhang T, Yang S, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986

    [16]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [17]

    Mak K. F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [18]

    Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J, Chang W H 2015 Nat. Commun. 6 8963

    [19]

    Tong W Y, Gong S J, Wan X, Duan C G 2016 Nat. Commun. 7 13612

    [20]

    Xie W, Zhang L, Yue Y, Li M, Wang H 2024 Phys. Rev. B 109 024406

    [21]

    Pan W 2022 Phys. Rev. B 106 125122

    [22]

    Zhao J, Zhang T, Peng R, Dai Y, Huang B, Ma Y 2022 J Phys. Chem. Lett. 13 8749

    [23]

    Feng X, Xu X, He Z, Peng R, Dai Y, Huang B, Ma Y 2021 Phys. Rev. B 104 075421

    [24]

    Xie W, Xu X, Li M, Wang H 2023 J Magn. Magn. Mater. 573 170662

    [25]

    Zhao P, Ma Y, Lei C, Wang H, Huang B, Dai Y 2019 Appl. Phys. Lett. 115 261605

    [26]

    Sheng K, Zhang B, Yuan H K, Wang Z Y 2022 Phys. Rev. B 105 195312

    [27]

    Cheng H X, Zhou J, Ji W, Zhang Y N, Feng Y P 2021 Phys. Rev. B 103 125121

    [28]

    Liu Y, Feng Y, Zhang T, He Z, Dai Y, Huang B, Ma Y 2023 Adv. Funct. Mater. 33 2305130

    [29]

    Zhang D, Li A, Chen X, Zhou W, Ouyang F 2022 Phys. Rev. B 105 085408

    [30]

    Li P, Liu B, Chen S, Zhang W X, Guo Z X 2024 Chin. Phys. B 33 017505

    [31]

    Luo C, Huang Z, Qiao H, Qi X, Peng X 2024 J Phys. Mater. 7 022006

    [32]

    Šmejkal L, Sinova J, Jungwirth T 2022 Phys. Rev. X 12 031042

    [33]

    Šmejkal L, Sinova J, Jungwirth T 2022 Phys. Rev. X 12 040501

    [34]

    Šmejkal L, González-Hernández R, Jungwirth T, Sinova J 2020 Sci. Adv. 6 eaaz8809

    [35]

    Leeb V, Mook A, Šmejkal L, Knolle J 2024 Phys. Rev. Lett. 132 236701

    [36]

    Reimers S, Odenbreit L, Šmejkal L, Strocov V N, Constantinou P, Hellenes A B, Jaeschke Ubiergo R, Campos W H, Bharadwaj V K, Chakraborty A, Denneulin T, Shi W, Dunin-Borkowski R E, Das S, Kläui M, Sinova J, Jourdan M 2024 Nat. Commun. 15 2116

    [37]

    Ma H Y, Hu M, Li N, Liu J, Yao W, Jia J F, Liu J 2021 Nat. Commun. 12 2846

    [38]

    Yang G, Li Z, Yang S, Li J, Zheng H, Zhu W, Pan Z, Xu Y, Cao S, Zhao W, Jana A, Zhang J, Ye M, Song Y, Hu L H, Yang L, Fujii J, Vobornik I, Shi M, Yuan H, Zhang Y, Xu Y, Liu Y 2025 Nat. Commun. 16 1442

    [39]

    Zhu Y, Chen T, Li Y, Qiao L, Ma X, Liu C, Hu T, Gao H, Ren W 2024 Nano Lett. 24 472

    [40]

    Wu Y, Deng L, Yin X, Tong J, Tian F, Zhang X 2024 Nano Lett. 24 10534

    [41]

    Chen X, Wang D, Li L, Sanyal B 2023 Appl. Phys. Lett. 123 022402

    [42]

    Guo S D, Guo X S, Cheng K, Wang K, Ang Y S 2023 Appl. Phys. Lett. 123 082401

    [43]

    Li J Y, Fan A D, Wang, Y K, Zhang Y, Li S 2024 Appl. Phys. Lett. 125 222404

    [44]

    Jiang Y, Zhang X, Bai H, Tian Y, Zhang B, Gong W J, Kong X 2025 Appl. Phys. Lett. 126 053102

    [45]

    Tan C Y, Gao Z F, Yang H C, Liu Z X, Liu K, Guo P J, Lu Z Y 2025 Phys. Rev. B 111 094411

    [46]

    Zhang R W, Cui C, Li R, Duan J, Li L, Yu Z M, Yao Y 2024 Phys. Rev. Lett. 133 056401

    [47]

    Xie W, Xu X, Yue Y, Xia H, Wang H 2025 Phys. Rev. B 111 134429

    [48]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [49]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [50]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [51]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [52]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J Chem. Phys. 132 154104

    [53]

    Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K, Kan E 2018 J. Am. Chem. Soc. 140 11519

    [54]

    Li X Y, Li Z H, Cao S G, Han J N, Fan Z Q, Zhang Z H 2024 Sci. Sin. Phys. Mech. Astron. 54 126811 (in Chinese) [李鑫焱,李占海,曹胜果,韩佳凝,范志强,张振华 2024 中国科学: 物理学 力学 天文学 54 126811]

    [55]

    Seixas L, Rodin A S, Carvalho A, Castro Neto A H 2016 Phys. Rev. Lett. 116 206803

    [56]

    Liu S Q, Li S Z, Si J S, Zhang W B 2023 Sci. Sin. Phys. Mech. Astron. 53 117311 (in Chinese) [刘水青,李树宗,司君山,张卫兵 2023 中国科学: 物理学 力学 天文学 53 117311]

  • [1] ZHAO Chenrui, YANG Qianqian, JIAO Ju, TANG Zhenghua, QIN Minghui. Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field. Acta Physica Sinica, doi: 10.7498/aps.74.20241033
    [2] HUANG Shihao, LI Jiapeng, LI Hailin, LU Xuxing, SUN Qinqin, XIE Deng. Electron transmission dynamics of Ge1–x Snx alloys based on inter-valley electrons transferring effect. Acta Physica Sinica, doi: 10.7498/aps.74.20240980
    [3] LIAO Yumin, CHEN Xumin, XU Huanglei, YI Shuisheng, WANG Hui, HUO Dexuan. Valley manipulation in WSeTe/CrI3 van der Waals heterostructures: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.74.20241750
    [4] WEN Ting, SU Ziluo, WANG Yalan, CAI Shuang, WU Jiaqi, QIN Jiaze, JIAO Chenyin, WANG Zenghui, ZHANG Zejuan, PEI Shenghai, XIA Juan. Tailoring Anisotropy in 2D Heterostructures via van der Waals Engineering. Acta Physica Sinica, doi: 10.7498/aps.74.20251120
    [5] Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui. Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field. Acta Physica Sinica, doi: 10.7498/aps.72.20230913
    [6] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, doi: 10.7498/aps.71.20220815
    [7] Yu Yang,  Zhang Wen-Jie,  Zhao Wan-Ying,  Lin Xian,  Jin Zuan-Ming,  Liu Wei-Min,  Ma Guo-Hong. Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer. Acta Physica Sinica, doi: 10.7498/aps.68.20181769
    [8] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, doi: 10.7498/aps.67.20180369
    [9] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, doi: 10.7498/aps.67.20180213
    [10] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, doi: 10.7498/aps.67.20180080
    [11] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, doi: 10.7498/aps.66.227802
    [12] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, doi: 10.7498/aps.64.137501
    [13] Sun Jia-Tao, Meng Sheng. The valley degree of freedom of an electron. Acta Physica Sinica, doi: 10.7498/aps.64.187301
    [14] Liu Jing, Wu Yu, Gao Yong. Research on SiGe heterojunction bipolar transistor with a trench-type emitter. Acta Physica Sinica, doi: 10.7498/aps.63.148503
    [15] Xiao Hai-Lin, Ouyang Shan, Nie Zai-Ping. The spatial degrees of freedom of MIMO quantum channels. Acta Physica Sinica, doi: 10.7498/aps.58.3685
    [16] Li Fa-Shen, Wang Tao, Wang Ying. Method for fabricating Fe3O4 nanoparticles using H2O2 and its comparison with coprecipitation method. Acta Physica Sinica, doi: 10.7498/aps.54.3100
    [17] XUE FANG-SHI. TRANSFERRED ELECTRON EFFECT BETWEEN DIFFERENT ENERGY VALLEYS IN SEMICONDUCTOR HETEROSTRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.39.142
    [18] XUE FANG-SHI. A SINGLE BAND-DOUBLE VALLEY THEORY FOR SUPERLA-TTICE AND QUANTUM WELL. Acta Physica Sinica, doi: 10.7498/aps.38.1103
    [19] Zheng Hang. THE MAGNON SPECTRA OF FERRIMAGNET RbNiF3. Acta Physica Sinica, doi: 10.7498/aps.31.1412
    [20] HSU DSEN-I. ON THE RESONANCE LINE WIDTH OF FERRIMAGNETICS CAUSED BY IMPURITY SCATTERING. Acta Physica Sinica, doi: 10.7498/aps.21.19
Metrics
  • Abstract views:  21
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  10 November 2025
  • /

    返回文章
    返回