Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Collective behavior of active particles with rotational inertia in periodic alternating fields

LI Ting LI Jiajian AI Baoquan

Citation:

Collective behavior of active particles with rotational inertia in periodic alternating fields

LI Ting, LI Jiajian, AI Baoquan
cstr: 32037.14.aps.74.20251142
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In active matter systems, external alternating fields, such as electric, magnetic, or optical fields, are widely used to regulate the motion and collective states of self-propelled particles. The presence of inertia introduces a delayed response to such fields, giving rise to complex collective dynamics. Nevertheless, how active particles with rotational inertia behave collectively under an unbiased periodic alternating field remains unclear. In this work, we conduct numerical simulations to study the collective behavior of such particles driven by a time-varying external torque that alternates symmetrically in direction.Our results show that the frequency of the alternating field plays a decisive role in shaping the collective state of the system. As the frequency increases, the system undergoes a series of different phase transitions. At low frequencies, the particles exhibit synchronized polar order. With frequency rising, inertial delay disrupts this synchronization, driving the system into a disordered state. When the field period matches the intrinsic rotational relaxation time of the particles, stable horizontal or vertical cross-flow bands emerge, within which groups of particles travel in opposite directions. At very high frequencies, the system develops nematic order, characterized by counter-propagating particle streams. The effective diffusion coefficient reaches its peak during the formation of alternating flow bands, indicating enhanced collective transport. These structural transitions are consistently captured by the evolution of global order parameters. In contrast, variations in the particle self-propulsion speed and repulsive interaction strength exert only minor influences on the collective states, highlighting the dominant role of the alternating field frequency. This study elucidates the fundamental mechanism through which periodic alternating fields regulate the collective behavior of inertial active particles via frequency tuning. The results offer new insights into the coupling between external driving fields and particle dynamics in non-equilibrium systems, with potential applications in the design of micromachines and active smart materials.
      Corresponding author: AI Baoquan, aibq@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075090, 12475036) and the Guangdong Provincial Basic and Applied Basic Research Foundation, China (Grant No. 2024A1515012575).
    [1]

    Klotsa D 2019 Soft Matter 15 8946Google Scholar

    [2]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [3]

    Nachtigall W 2001 Math. Meth. Appl. Sci. 24 1401Google Scholar

    [4]

    Dauchot O, Loewen H 2019 J. Chem. Phys. 151 114901Google Scholar

    [5]

    Wensink H H, Loewen H 2008 Phys. Rev. E 78 031409Google Scholar

    [6]

    Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F, Yang M 2020 Proc. Natl. Acad. Sci. USA 117 11901Google Scholar

    [7]

    Peruani F, Ginelli F, Baer M, Chate H 2011 J. Phys.: Conf. Ser. 297 0120140Google Scholar

    [8]

    Stenhammar J, Marenduzzo D, Allen R J, Cates M E 2014 Soft Matter 10 1489Google Scholar

    [9]

    Tailleur J, Cates M E 2008 Phys. Rev. Lett. 100 218103Google Scholar

    [10]

    Toner J, Tu Y H 1995 Phys. Rev. Lett. 75 4326Google Scholar

    [11]

    Liao G J, Hall C K, Klapp S H L 2020 Soft Matter 16 6443Google Scholar

    [12]

    Romanczuk P, Baer M, Ebeling W, Lindner B, Schimansky-Geier L 2012 European Physical Journal-Special Topics 202 1Google Scholar

    [13]

    Speck T 2020 Soft Matter 16 2652Google Scholar

    [14]

    Scholz C, Jahanshahi S, Ldov A, Loewen H 2018 Nature Commun. 9 5156Google Scholar

    [15]

    Mijalkov M, McDaniel A, Wehr J, Volpe G 2016 Phys. Rev. X 6 011008Google Scholar

    [16]

    Scholz C, Engel M, Poeschel T 2018 Nature Commun. 9 1497Google Scholar

    [17]

    Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S 2016 Nature Mater. 15 1095Google Scholar

    [18]

    Zhang B, Snezhko A, Sokolov A 2022 Phys. Rev. Lett. 128 018004Google Scholar

    [19]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [20]

    Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Loewen H, Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308Google Scholar

    [21]

    Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E 2015 Proc. IEEE 103 205Google Scholar

    [22]

    Bricard A, Caussin J B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nature Commun. 6 7470Google Scholar

    [23]

    Chen J, Zhang H, Zheng X, Cui H 2014 AIP Adv. 4 031325Google Scholar

    [24]

    Nadal F, Michelin S 2020 J. Fluid Mech. 898 A10Google Scholar

    [25]

    Wu Y, Fu A, Yossifon G 2020 Sci. Adv. 6 eaay4412Google Scholar

    [26]

    Lee J G, Al Harraq A, Bishop K J M, Bharti B 2021 J. Phys. Chem. B 125 4232Google Scholar

    [27]

    Marcos J C U, Liebchen B 2023 Phys. Rev. Lett. 131 038201Google Scholar

  • 图 1  周期交流场驱动惯性活性粒子在周期边界中运动粒子快照图 (a) $ \omega =0.01 $; (b) $ \omega =10 $; (c) $ \omega =13 $; (d) $ \omega =14 $; (e) $ \omega = $$ 15 $; (f) $ \omega =16 $; (g) $ \omega =33 $; (h) $ \omega =46 $; (i) $ \omega =50 $; 其他参数设置为: $ I=3000,\; \varepsilon =1.0,\; {D}_{\mathrm{r}}=0.01 $和${{v}}_{0}=1.0 $. 其中, 用粒子填充颜色区分粒子在竖直方向的运动方向, 黑色表示$ {v}_{y} > 0 $, 绿色表示$ {v}_{y} < 0 $, 红色箭头表示粒子运动方向

    Figure 1.  Particle snapshots of unbiased AC field-driven inertially active particles moving in the periodic boundary: (a) $ \omega =0.01 $; (b) $ \omega =10 $; (c) $ \omega =13 $; (d) $ \omega =14 $; (e) $ \omega =15 $; (f) $ \omega =16 $; (g) $ \omega =33 $; (h) $ \omega =46 $; (i) $ \omega =50 $. Other parameters are set to $ I=3000,\; { \varepsilon }=1.0,\; {D}_{\mathrm{r}}=0.01,$ and ${{v}}_{0}=1.0 $. Where the particle fill color is used to distinguish the particle motion direction in the vertical direction, black means $ {v}_{y} > 0 $, green means $ {v}_{y} < 0 $, and the red arrow indicates the direction of particle motion.

    图 2  系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随周期交流场频率$ \omega $的变化. 其他参数设置为$ {I}=3000,\; \varepsilon=1.0,\; {D}_{\mathrm{r}}=0.01 $和${{v}}_{0}=1.0 $. 图中a, b, c, d, e及f点的状态分别对应图1(a)图1(b)图1(d)图1(f)图1(h)图1(j)

    Figure 2.  Variation of the effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ of inertially active particles with AC field frequency $ \omega $. Other parameters are set to $ {I}= 3000,\; \varepsilon = 1.0,\; {{D}}_{\text{r}}= $$ 0.01 ,$ and ${{v}}_{0}= 1.0. $ The states at points a, b, c, d, e and f in the figure correspond to Fig. 1(a), Fig. 1(b), Fig. 1(d), Fig. 1(f), Fig. 1(h) and Fig. 1(j), respectively.

    图 3  (a) 周期交流场驱动下系统极性序参量$ P $随交流场频率$ { \omega } $的变化; (b) 向列序参量$ Q $随交流场频率$ { \omega } $的变化. 其他参数设置为: $ {I}=3000,\; \varepsilon =1.0,\; {{D}}_{\text{r}}=0.01 $和${{v}}_{0}= 1.0 $. 图中a, b, c, d, e及f点的状态分别对应图1(a)图1(b)图1(d)图1(f)图1(h)图1(j)

    Figure 3.  (a) Variation of the system polarity order parameter P with AC field frequency $ \omega $; (b) variation of the vectorial order parameter $ Q $ with the AC field frequency $ \omega $. Other parameters are set to $ {I}= 3000,\; { \varepsilon }= 1.0,\; {{D}}_{\text{r}}= $$ 0.01, $ and ${{v}}_{0}=1.0. $ The states at points a, b, c, d, e and f in the figure correspond to Fig. 1(a), Fig. 1(b), Fig. 1(d), Fig. 1(f), Fig. 1(h) and Fig. 1(j), respectively.

    图 4  (a) 不同$ \omega $值下, 有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随周期交流场强度$ {I} $的变化; (b) 不同$ \omega $值下, 极性序参量$ P $随随交流场强度$ I $的变化; (c) 不同$ \omega $值下, 向列序参量$ Q $随交流场强度I的变化. 其他参数设置为: $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01 $和${{v}}_{0}= 1.0 $

    Figure 4.  (a) Variation of effective diffusion coefficient $ {{D}}_{\text{eff}} $ with AC field strength I for different $ \omega $; (b) variation of polarity order parameter P with AC field strength I for different $ \omega $; (c) variation of nematic order parameter $ Q $ with AC field strength $ I $ for different $ \omega $. The other parameters are set as $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01, $ and ${{v}}_{0}= 1.0 $.

    图 5  (a) 在不同$ \omega $值下, 系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随粒子自驱动速度$ {v}_{0} $的影响; (b) 在不同$ \omega $值下, 系统极性序参量$ {P} $随粒子自驱动速度$ {v}_{0} $的变化; (c) 在不同$ \omega $值下, 系统向列序参量$ Q $随粒子自驱动速度$ {v}_{0} $的变化. 其他参数设置为: $ { \varepsilon }= 1.0, \;{{D}}_{\text{r}}= 0.01$和${I}= 3000 $

    Figure 5.  (a) Variation of effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ with particle self-propulsion velocity $ {v}_{0} $ at different frequencies; (b) variation of the system polar order parameter P with the particle self-propulsion velocity $ {v}_{0} $ at different frequencies; (c) variation of the system nematic order parameter $ Q $ with the particle self-propulsion velocity $ {v}_{0} $ at different frequencies. The other parameters are set as $ \varepsilon = 1.0, \;{D_{\text{r}}} = 0.01 $ and $I = 3000 $.

    图 6  (a) 不同$ \omega $值下, 系统有效扩散系数$ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $随相互作用强度$ { \varepsilon } $的变化; (b) 不同$ \omega $值下, 系统极性序参量$P $随相互作用强度$ { \varepsilon } $的变化; (c) 不同$ \omega $值下, 系统向列序参量$Q $随相互作用强度$ { \varepsilon } $的变化. 其他参数设置为: $ {I}=3000, \;{{D}}_{\text{r}}=0.01$和${{v}}_{0}=1.0 $

    Figure 6.  (a) Variation of effective diffusion coefficient $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $ with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $; (b) variation of the system polar order parameter $Q $ with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $; (c) variation of the system nematic order parameter $ Q $ with interaction strength $ { \varepsilon } $ for different AC field frequencies $ \omega $. The other parameters are set as $ {I}=3000, \;{D}_{\mathrm{r}}=0.01, $ and ${{v}}_{0}=1.0 $.

  • [1]

    Klotsa D 2019 Soft Matter 15 8946Google Scholar

    [2]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [3]

    Nachtigall W 2001 Math. Meth. Appl. Sci. 24 1401Google Scholar

    [4]

    Dauchot O, Loewen H 2019 J. Chem. Phys. 151 114901Google Scholar

    [5]

    Wensink H H, Loewen H 2008 Phys. Rev. E 78 031409Google Scholar

    [6]

    Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F, Yang M 2020 Proc. Natl. Acad. Sci. USA 117 11901Google Scholar

    [7]

    Peruani F, Ginelli F, Baer M, Chate H 2011 J. Phys.: Conf. Ser. 297 0120140Google Scholar

    [8]

    Stenhammar J, Marenduzzo D, Allen R J, Cates M E 2014 Soft Matter 10 1489Google Scholar

    [9]

    Tailleur J, Cates M E 2008 Phys. Rev. Lett. 100 218103Google Scholar

    [10]

    Toner J, Tu Y H 1995 Phys. Rev. Lett. 75 4326Google Scholar

    [11]

    Liao G J, Hall C K, Klapp S H L 2020 Soft Matter 16 6443Google Scholar

    [12]

    Romanczuk P, Baer M, Ebeling W, Lindner B, Schimansky-Geier L 2012 European Physical Journal-Special Topics 202 1Google Scholar

    [13]

    Speck T 2020 Soft Matter 16 2652Google Scholar

    [14]

    Scholz C, Jahanshahi S, Ldov A, Loewen H 2018 Nature Commun. 9 5156Google Scholar

    [15]

    Mijalkov M, McDaniel A, Wehr J, Volpe G 2016 Phys. Rev. X 6 011008Google Scholar

    [16]

    Scholz C, Engel M, Poeschel T 2018 Nature Commun. 9 1497Google Scholar

    [17]

    Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S 2016 Nature Mater. 15 1095Google Scholar

    [18]

    Zhang B, Snezhko A, Sokolov A 2022 Phys. Rev. Lett. 128 018004Google Scholar

    [19]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339 936Google Scholar

    [20]

    Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Loewen H, Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308Google Scholar

    [21]

    Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E 2015 Proc. IEEE 103 205Google Scholar

    [22]

    Bricard A, Caussin J B, Das D, Savoie C, Chikkadi V, Shitara K, Chepizhko O, Peruani F, Saintillan D, Bartolo D 2015 Nature Commun. 6 7470Google Scholar

    [23]

    Chen J, Zhang H, Zheng X, Cui H 2014 AIP Adv. 4 031325Google Scholar

    [24]

    Nadal F, Michelin S 2020 J. Fluid Mech. 898 A10Google Scholar

    [25]

    Wu Y, Fu A, Yossifon G 2020 Sci. Adv. 6 eaay4412Google Scholar

    [26]

    Lee J G, Al Harraq A, Bishop K J M, Bharti B 2021 J. Phys. Chem. B 125 4232Google Scholar

    [27]

    Marcos J C U, Liebchen B 2023 Phys. Rev. Lett. 131 038201Google Scholar

  • [1] CHEN Jianli, LI Jiajian, AI Baoquan. Cluster behavior and spontaneous velocity alignment of active Brownian particles with attractive interactions. Acta Physica Sinica, 2025, 74(6): 060501. doi: 10.7498/aps.74.20241746
    [2] DU Haiting, ZHOU Xiaoyi, NI Qiying, CHEN Kang, TIAN Wende, ZHANG Tianhui. Influence of attractive interactions on collective behavior in Quincke active colloidal systems. Acta Physica Sinica, 2025, 74(11): 116401. doi: 10.7498/aps.74.20250292
    [3] CAI Jiahe, DAI Dong, PAN Yongquan. Influence of surface-adhered water droplets on discharge characteristics and chemical species distribution in atmospheric-pressure helium dielectric barrier discharge system. Acta Physica Sinica, 2025, 74(23): 235204. doi: 10.7498/aps.74.20250827
    [4] GUO Sihang, YANG Guangyu, MENG Guoqing, WANG Yingying, PAN Junxing, ZHANG Jinjun. Dynamic self-assembly of active particle systems controlled by light fields. Acta Physica Sinica, 2025, 74(9): 090501. doi: 10.7498/aps.74.20241556
    [5] Jin Yan, Shi Zi-Xuan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang. Finite porous medium induced aggregation behavior of active dumbbells. Acta Physica Sinica, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [6] Zhou Xiong-Feng, Chen Bin, Liu Kun. Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field. Acta Physica Sinica, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [7] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [8] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [9] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua. Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [10] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [11] Zhong Ying, Shi Xia-Qing. Collective behaviors of self-propelled rods under semi-flexible elastic confinement. Acta Physica Sinica, 2020, 69(8): 080507. doi: 10.7498/aps.69.20200561
    [12] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [13] Xia Yi-Qi, Shen Zhuang-Lin, Guo Yong-Kun. Spontaneous rotation of ratchet wheel with soft boundary in active particle bath. Acta Physica Sinica, 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [14] Yang Jie, Li Xiu-Ping, Wang Shan-Jin, Luo Shi-Yu. Crystalline undulator radiation and motion behavior in the vicinity of the resonance line. Acta Physica Sinica, 2014, 63(8): 084104. doi: 10.7498/aps.63.084104
    [15] Wang Ying-Ze, Song Xin-Nan, Liu Dong. Asymptotic analysis for effect of thermal inertia on thermal behaviors. Acta Physica Sinica, 2013, 62(21): 214601. doi: 10.7498/aps.62.214601
    [16] Yang Bo, Mei Dong-Cheng. Effect of non-Gaussian noise on negative mobliity. Acta Physica Sinica, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [17] Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [18] Zhang Lin, Kong Hong-Yan, Yang Guo-Jian. Self-organization of light driven atoms induced by recoil effect in a harmonic trap. Acta Physica Sinica, 2006, 55(10): 5122-5128. doi: 10.7498/aps.55.5122
    [19] Deng Mao-Lin, Hong Ming-Chao, Zhu Wei-Qiu, Wang Yuan-Mei. Stationary solution of motion of active Brownian particle. Acta Physica Sinica, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [20] . Acta Physica Sinica, 1975, 24(4): 281-290. doi: 10.7498/aps.24.281
Metrics
  • Abstract views:  396
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  25 August 2025
  • Accepted Date:  15 September 2025
  • Available Online:  14 October 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回