Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solving inverse problems of low-temperature plasmas by physics-informed neural networks

LI Wenkai ZHAO Zheng ZHANG Yuantao

Citation:

Solving inverse problems of low-temperature plasmas by physics-informed neural networks

LI Wenkai, ZHAO Zheng, ZHANG Yuantao
cstr: 32037.14.aps.74.20251159
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The inverse problem of low-temperature plasmas refers to determining discharge parameters such as voltage amplitude and frequency from plasma characteristics, including plasma density, electric field and electron temperature. Within the framework of fluid description, it is usually very challenging to address inverse problems by using traditional discretization methods. In this work, physics-informed neural networks (PINNs) are introduced to solve the inverse problem of atmospheric-pressure radio-frequency plasmas. The loss function of the PINNs is constructed by embedding three components: the main governing equations (continuity equation, Poisson equation, and drift–diffusion approximation), the discharge parameters to be inferred (voltage amplitude and frequency in this study), and additional electric field data. The well-trained PINNs can accurately recover the discharge parameters with errors within about 1%, while providing the full spatiotemporal evolution of plasma density, electric field, and flux. Furthermore, the effects of sampling positions, sampling sizes, and noise levels of the electric field data on the inversion accuracy of voltage amplitude and frequency are systematically investigated. The results demonstrate that PINNs are capable of achieving precise inversions of discharge parameters and accurate prediction of plasma characteristics under given experimental or computational data, thereby laying a foundation for the intelligent control of low-temperature plasmas.
      Corresponding author: ZHANG Yuantao, ytzhang@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375201).
    [1]

    Massines F, Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411Google Scholar

    [2]

    Huang X, Li Y, Zhong X 2014 Nanoscale Res. Lett. 9 572Google Scholar

    [3]

    Jüstel T, Krupa J C, Wiechert D U 2001 J. Lumin. 93 179Google Scholar

    [4]

    Magureanu M, Bradu C, Piroi D, Mandache N B, Parvulescu V 2013 Plasma Chem. Plasma Process. 33 51Google Scholar

    [5]

    Whittaker A G, Graham E M, Baxter R L, Jones A C, Richardson P R, Meek G, Campbell G A, Aitken A, Baxter H C 2004 J. Hosp. Infect. 56 37Google Scholar

    [6]

    Santhanakrishnan A, Reasor D A, Lebeau R P 2009 Phys. Fluids 21 043602Google Scholar

    [7]

    Shukla P K, Mamun A 2015 Introduction to Dusty Plasma Physics (Boca Raton: CRC Press

    [8]

    Zhang X, Zhang X F, Li H P, Wang L Y, Zhang C, Xing X H, Bao C Y 2014 Appl. Microbiol. Biotechnol. 98 5387Google Scholar

    [9]

    Chen Z Q, Liu M H, Xia G Q, Huang Y R 2012 IEEE Trans. Plasma Sci. 40 2861Google Scholar

    [10]

    Munro J J, Tennyson J 2008 J. Vac. Sci. Technol. A 26 865Google Scholar

    [11]

    Lu X P, Reuter S, Laroussi M, Liu D W 2019 Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications (Boca Raton: CRC Press

    [12]

    Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, VanDijk J, Zimmermann J L 2009 New J. Phys. 11 115012Google Scholar

    [13]

    Ames W F 2014 Numerical Methods for Partial Differential Equations (Cambridge, MA: Academic Press

    [14]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [15]

    Wu C X, Zhu M, Tan Q Y, Kartha Y, Lu L 2023 Comput. Methods Appl. Mech. Eng. 403 115671Google Scholar

    [16]

    Li W K, Zhang Y T 2025 J. Appl. Phys. 137 20

    [17]

    Li W, Zhang Y 2025 Phys. Fluids 37 077159Google Scholar

    [18]

    Kawaguchi S, Takahashi K, Ohkama H, Makabe T 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [19]

    Wu B, Zhong L 2022 Frontier Academic Forum of Electrical Engineering (Beijing: Chinese Society of Electrical Engineering) p1083

    [20]

    仲林林, 吴冰钰, 吴奇 2024 电工技术学报 39 3457

    Zhong L L, Wu B Y, Wu Q 2024 Trans. China Electrotechn. Soc. 39 3457

    [21]

    方泽, 潘泳全, 戴栋, 张俊勃 2024 物理学报 73 145201Google Scholar

    Fang Z, Pan Y Q, Dai D, Zhang J B 2024 Acta Phys. Sin. 73 145201Google Scholar

    [22]

    Kwon H, Kim E, Cho S, Kwon D C, Choe H, Choi M 2024 East Asian J. Appl. Math. 14 636

    [23]

    Zhang B Y, Cai G B, Weng H Y, Wang W Z, Liu L H, He B J 2023 Mach. Learn. Sci. Technol. 4 045015Google Scholar

    [24]

    Rutigliano N, Rossi R, Murari A, Gelfusa M, Craciunescu T, Mazon D, Gaudio, P 2025 Plasma Phys. Control. Fusion 67 065029Google Scholar

    [25]

    Rossi R, Gelfusa M, Murari A 2023 Nucl. Fusion 63 126059Google Scholar

    [26]

    Zhang Y T, Li Q Q, Lou J, Lou J and Li Q M 2010 Appl. Phys. Lett. 97 14

    [27]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [28]

    Vanraes P, Nikiforov A, Bogaerts A, Leys C 2018 Sci. Rep. 8 10919Google Scholar

    [29]

    Shi J J, Kong M G 2005 J. Appl. Phys. 97 023306Google Scholar

    [30]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [31]

    Chen C Q, Yang Y H, Xiang Y, Hao W R 2025 J. Sci. Comput. 104 54Google Scholar

    [32]

    Tian Y J, Zhang Y Q, Zhang H B 2023 Mathematics 11 682Google Scholar

    [33]

    王绪成, 李文凯, 艾飞, 刘志兵, 张远涛 2023 力学学报 55 2900

    Wang X C, Li W K, Ai F, Liu Z B, Zhang Y T 2023 Chin. J. Theor. Appl. Mech. 55 2900

    [34]

    Zhang Y T, Gao S H, Zhu Y Y 2023 J. Appl. Phys. 133 5

    [35]

    Moritz P, Nishihara R, Jordan M 2016 Artif. Intell. Stat. 1 249

  • 图 1  PINNs求解流体模型反问题结构图

    Figure 1.  Schematic of PINNs for solving forward problem and inverse problem.

    图 2  PINNs训练过程中损失函数的变化曲线

    Figure 2.  Variation curve of loss function in PINNs training process.

    图 3  训练过程中可训练参数幅值和频率的变化曲线

    Figure 3.  Variation curve of amplitude and frequency of trainable parameters during training.

    图 4  由PINNs反演得到的边界条件和实际电压边界条件的比较

    Figure 4.  Comparison between boundary conditions obtained by PINNs inversion and actual power supply boundary conditions.

    图 5  PINNs与传统流体模型在电子密度、离子密度和电场强度分布的对比结果 (a)—(c) 数值模拟结果; (d)—(f) PINNs 预测结果; (g)—(i) 误差分布

    Figure 5.  The comparison results of electron density, ion density and electric field intensity distribution between PINNs and traditional fluid model: (a)–(c)Numerical simulation results; (d)–(f)prediction results of PINNs; (g)–(i)error distribution.

    图 6  PINNs 与传统流体模型在电子通量、离子通量和电势分布的对比结果 (a)—(c) 流体模型结果; (d)—(f) PINNs预测结果; (g)—(i) 误差分布

    Figure 6.  Comparison of electron flux, ion flux and potential distribution: (a)–(c)The result of fluid model; (d)–(f) the prediction result of PINNs; (g)–(i) the error.

    图 7  电流峰值时刻PINNs与传统流体模型计算得到的(a)电场、(b)电子密度和离子密度的对比

    Figure 7.  Comparison of (a) electric field, (b) electron density and ion density calculated by current peak time PINNs and traditional fluid model.

    图 8  不同数量采样点条件下PINNs反演电压幅值与频率相对误差的变化曲线

    Figure 8.  Variation curves of amplitude and frequency relative errors of PINNs inversion under different number of sampling points.

    图 9  不同采样点噪声条件下PINNs反演的幅值和频率相对误差的变化曲线

    Figure 9.  Variation curves of amplitude and frequency relative errors of PINNs inversion under different noise level of sampling points.

    表 1  在不同采样点位置条件下PINNs反演的幅值和频率

    Table 1.  Amplitude and frequency of PINNs inversion at different sampling points.

    数据集 采样点位置 幅值$ {\hat V_0} $ 幅值相对误差/% 频率$ \hat f $ 频率相对误差/%
    1 $E(0, t)$ 435.83 0.94811 10.046 0.46051
    2 $E\left(\dfrac{1}{4}d, t\right)$ 434.03 1.3559 9.981 0.18646
    3 $E\left(\dfrac{1}{2}d, t\right)$ 431.73 1.88 10.023 0.23
    4 $E\left(\dfrac{3}{4}d, t\right)$ 432.65 1.67 10.015 0.15
    5 $E(d, t)$ 437.01 0.68 10.010 0.099
    6 $E(x, 0)$
    7 ${N_{\text{e}}}\left(\dfrac{1}{2}d, t\right) + {N_{\text{i}}}\left(\dfrac{1}{2}d, t\right)$
    DownLoad: CSV

    表 2  在不同采样点数量条件下PINNs反演的幅值和频率

    Table 2.  Amplitude and frequency of PINNs inversion with different sampling points.

    数据集采样点数量幅值$ {\hat V_0} $幅值
    相对误差/%
    频率$ \hat f $频率
    相对误差/%
    1200436.270.84710.0100.10
    2150437.500.56910.0110.12
    3100437.010.67910.0110.10
    450436.830.72010.0130.13
    530436.210.86010.0110.11
    620434.921.15410.0100.10
    710429.582.36810.0190.19
    DownLoad: CSV

    表 3  不同噪声水平条件下PINNs反演的幅值和频率

    Table 3.  Amplitude and frequency of PINNs inversion under different noise levels.

    数据集 噪声
    水平
    幅值
    $ {\hat V_0} $/V
    幅值
    相对误差/%
    频率$ \hat f $
    /MHz
    频率
    相对误差/%
    1 0.01 438.34 0.378 10.010 0.098
    2 0.02 438.48 0.345 10.008 0.078
    3 0.04 439.37 0.144 10.002 0.021
    4 0.06 439.78 0.051 10.009 0.092
    5 0.08 434.44 1.263 9.934 0.646
    7 0.1 432.09 1.797 9.915 0.850
    8 0.12 428.05 2.716 9.8873 1.127
    DownLoad: CSV
  • [1]

    Massines F, Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411Google Scholar

    [2]

    Huang X, Li Y, Zhong X 2014 Nanoscale Res. Lett. 9 572Google Scholar

    [3]

    Jüstel T, Krupa J C, Wiechert D U 2001 J. Lumin. 93 179Google Scholar

    [4]

    Magureanu M, Bradu C, Piroi D, Mandache N B, Parvulescu V 2013 Plasma Chem. Plasma Process. 33 51Google Scholar

    [5]

    Whittaker A G, Graham E M, Baxter R L, Jones A C, Richardson P R, Meek G, Campbell G A, Aitken A, Baxter H C 2004 J. Hosp. Infect. 56 37Google Scholar

    [6]

    Santhanakrishnan A, Reasor D A, Lebeau R P 2009 Phys. Fluids 21 043602Google Scholar

    [7]

    Shukla P K, Mamun A 2015 Introduction to Dusty Plasma Physics (Boca Raton: CRC Press

    [8]

    Zhang X, Zhang X F, Li H P, Wang L Y, Zhang C, Xing X H, Bao C Y 2014 Appl. Microbiol. Biotechnol. 98 5387Google Scholar

    [9]

    Chen Z Q, Liu M H, Xia G Q, Huang Y R 2012 IEEE Trans. Plasma Sci. 40 2861Google Scholar

    [10]

    Munro J J, Tennyson J 2008 J. Vac. Sci. Technol. A 26 865Google Scholar

    [11]

    Lu X P, Reuter S, Laroussi M, Liu D W 2019 Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications (Boca Raton: CRC Press

    [12]

    Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, VanDijk J, Zimmermann J L 2009 New J. Phys. 11 115012Google Scholar

    [13]

    Ames W F 2014 Numerical Methods for Partial Differential Equations (Cambridge, MA: Academic Press

    [14]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [15]

    Wu C X, Zhu M, Tan Q Y, Kartha Y, Lu L 2023 Comput. Methods Appl. Mech. Eng. 403 115671Google Scholar

    [16]

    Li W K, Zhang Y T 2025 J. Appl. Phys. 137 20

    [17]

    Li W, Zhang Y 2025 Phys. Fluids 37 077159Google Scholar

    [18]

    Kawaguchi S, Takahashi K, Ohkama H, Makabe T 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [19]

    Wu B, Zhong L 2022 Frontier Academic Forum of Electrical Engineering (Beijing: Chinese Society of Electrical Engineering) p1083

    [20]

    仲林林, 吴冰钰, 吴奇 2024 电工技术学报 39 3457

    Zhong L L, Wu B Y, Wu Q 2024 Trans. China Electrotechn. Soc. 39 3457

    [21]

    方泽, 潘泳全, 戴栋, 张俊勃 2024 物理学报 73 145201Google Scholar

    Fang Z, Pan Y Q, Dai D, Zhang J B 2024 Acta Phys. Sin. 73 145201Google Scholar

    [22]

    Kwon H, Kim E, Cho S, Kwon D C, Choe H, Choi M 2024 East Asian J. Appl. Math. 14 636

    [23]

    Zhang B Y, Cai G B, Weng H Y, Wang W Z, Liu L H, He B J 2023 Mach. Learn. Sci. Technol. 4 045015Google Scholar

    [24]

    Rutigliano N, Rossi R, Murari A, Gelfusa M, Craciunescu T, Mazon D, Gaudio, P 2025 Plasma Phys. Control. Fusion 67 065029Google Scholar

    [25]

    Rossi R, Gelfusa M, Murari A 2023 Nucl. Fusion 63 126059Google Scholar

    [26]

    Zhang Y T, Li Q Q, Lou J, Lou J and Li Q M 2010 Appl. Phys. Lett. 97 14

    [27]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [28]

    Vanraes P, Nikiforov A, Bogaerts A, Leys C 2018 Sci. Rep. 8 10919Google Scholar

    [29]

    Shi J J, Kong M G 2005 J. Appl. Phys. 97 023306Google Scholar

    [30]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [31]

    Chen C Q, Yang Y H, Xiang Y, Hao W R 2025 J. Sci. Comput. 104 54Google Scholar

    [32]

    Tian Y J, Zhang Y Q, Zhang H B 2023 Mathematics 11 682Google Scholar

    [33]

    王绪成, 李文凯, 艾飞, 刘志兵, 张远涛 2023 力学学报 55 2900

    Wang X C, Li W K, Ai F, Liu Z B, Zhang Y T 2023 Chin. J. Theor. Appl. Mech. 55 2900

    [34]

    Zhang Y T, Gao S H, Zhu Y Y 2023 J. Appl. Phys. 133 5

    [35]

    Moritz P, Nishihara R, Jordan M 2016 Artif. Intell. Stat. 1 249

  • [1] WANG Yuduo, CHEN Jiaxin, LI Biao. Solving nonlinear Schrödinger equations and parameter discovery via extended mixed-training physics-informed neural networks. Acta Physica Sinica, 2025, 74(16): 160201. doi: 10.7498/aps.74.20250422
    [2] LIU Ming, ZHANG Siqi, LI Hong. Dynamic analysis of shortcut to adiabaticity based on physical information neural network. Acta Physica Sinica, 2025, 74(11): 114204. doi: 10.7498/aps.74.20250147
    [3] ZHANG Zhaoyang, WANG Qingwang. allaPINNs: A physics-informed neural network with improvement of information representation and loss optimization for solving partial differential equations. Acta Physica Sinica, 2025, 74(18): 188701. doi: 10.7498/aps.74.20250707
    [4] QIN Chenglong, ZHAO Liang, JIANG Gang. Machine learning model predicted thermodynamic stability of rare earth compounds. Acta Physica Sinica, 2025, 74(13): 130201. doi: 10.7498/aps.74.20250362
    [5] LIANG Chen, LU Shaoyu, HUANG Dong, CHEN Xin, FENG Yan. Diagnosing global properties of dusty plasma based on machine learning from single particle dynamics. Acta Physica Sinica, 2025, 74(20): 205202. doi: 10.7498/aps.74.20251129
    [6] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [7] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [8] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [9] Tian Shi-Fang, Li Biao. Solving complex nonlinear problems based on gradient-optimized physics-informed neural networks. Acta Physica Sinica, 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [10] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [11] Yang Meng-Qi, Wu Fu-Yuan, Chen Zhi-Bo, Zhang Yi-Xiang, Chen Yi, Zhang Jin-Chuan, Chen Zhi-Zhen, Fang Zhi-Fan, Rafael Ramis, Zhang Jie. Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets. Acta Physica Sinica, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [12] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [13] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [14] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [15] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [16] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [17] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [18] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [19] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
Metrics
  • Abstract views:  455
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2025
  • Accepted Date:  13 October 2025
  • Available Online:  20 October 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回