Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress in High-Speed Vision Chips

WANG Zhe YANG Xu LV Zhuoyang DING Bowen YU Shuangming DOU Runjiang SHI Cong LIU Jian WU Nanjian FENG Peng LIU Liyuan

Citation:

Research Progress in High-Speed Vision Chips

WANG Zhe, YANG Xu, LV Zhuoyang, DING Bowen, YU Shuangming, DOU Runjiang, SHI Cong, LIU Jian, WU Nanjian, FENG Peng, LIU Liyuan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In edge computing scenarios, response speed, compactness, and power efficiency have become critical challenges for visual systems. Conventional vision architectures that separate sensing and computation suffer from high latency, excessive power consumption, and potential privacy leakage caused by data transmission. To address these issues, vision chips inspired by the human visual system have emerged as a promising solution. By integrating image acquisition and information processing within a single hardware platform, such chips enable a sensing–computation co-processing paradigm, supporting efficient visual perception and computation directly at the edge. Developing high-speed vision chips is an inherently interdisciplinary task that bridges physics, electronics, and information science. It addresses critical issues across device fabrication, circuit design, and intelligent algorithm integration. This paper systematically reviews recent advances in the core components of high-speed vision chips.
    For high-speed sensor devices, the paper analyzes the physical mechanisms, structural innovations, and performance limitations of CMOS image sensors (CIS), dynamic vision sensors (DVS), and single-photon image sensors. High-speed CIS devices enhance temporal response by optimizing two fundamental aspects: charge transfer velocity and transfer path length. Gradient doping is employed to induce high-speed drift motion during charge transfer, while structural optimization based on physical device modeling shortens the transfer path, thereby enabling fast response. In contrast, DVS perform event-triggered readout when light intensity changes exceed a predefined threshold. This event-driven mechanism effectively removes static redundant information, producing only spike-based data that reflect brightness changes, achieving low latency and high temporal resolution. For single-photon detection, quantum image sensors based on CIS investigate noise origins and physical mechanisms, achieving ultra-low noise and extremely high conversion gain. Image sensors employing single-photon avalanche diodes (SPADs) leverage the avalanche effect to directly convert incident photons into pulse outputs, realizing high-speed and high-sensitivity single-photon detection. Furthermore, electric-field modulation enhances photogenerated charge collection and reduces temporal jitter, thereby improving timing precision in SPADs.
    In terms of readout circuits, this paper reviews the architectures and optimization strategies for high-speed analog-to-digital converters (ADCs), address-event encoding, and time-correlated single-photon counting. To enhance conversion efficiency while minimizing chip area and power consumption, various ADC architectures have been developed. The successive approximation register (SAR) ADC has become a foundational solution owing to its high integration and low power characteristics. Hybrid architectures such as SAR/single-slope (SS) and pipeline–SAR combine the strengths of different schemes, effectively overcoming the area–resolution trade-offs inherent in conventional SAR ADCs. For DVS sensors, the address-event representation (AER) readout mechanism performs real-time detection of brightness variations and outputs them as asynchronous events, greatly enhancing image processing throughput while reducing storage and transmission demands. In SPAD-based sensors, on-chip integration of counting and histogram computation effectively alleviates the data throughput bottleneck associated with large-scale single-photon detection. These readout strategies, each tailored to the characteristics of their corresponding sensing mechanisms, collectively improve data conversion and transmission efficiency in high-speed imaging scenarios.
    For intelligent processing, the primary objective is to efficiently extract information from sensor data and enable algorithmic intelligence. This process generally involves two stages: the reconstruction stage focuses on recovering high-quality image sequences from sparse spike streams, while the intelligent processing stage achieves high-speed semantic understanding through real-valued or spike-based computational architectures. By deeply integrating reconstruction and cognition at both algorithmic and hardware levels, end-to-end intelligent vision systems can simultaneously achieve high speed, low power consumption, and high accuracy. With ongoing technological convergence, multimodal vision chips integrating CIS, DVS, and SPAD architectures combine the advantages of different sensor modalities, offering more comprehensive perceptual capabilities for next-generation machine vision systems. Looking ahead, the continuous advancement of semiconductor fabrication technologies and novel materials, combined with the deep integration of multimodal sensing and heterogeneous computing paradigms, is expected to drive the evolution of high-performance, low-power, and intelligent vision chips.
  • [1]

    Wu N J 2018 Sci. China Inf. Sci. 61 060421

    [2]

    Mead C 1990 Proceedings of the IEEE 78 1629

    [3]

    Ishikawa M, Ogawa K, Komuro T, Ishii I 1999 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 17, 1999 p206

    [4]

    Shi C, Yang J, Han Y, Cao Z X, Qin Q, Liu L Y, Wu N J, Wang Z H 2014 IEEE J. Solid-State Circuits 49 2067

    [5]

    Eki R, Yamada S, Ozawa H, Kai H, Okuike K, Gowtham H, Nakanishi H, Almog E, Livne Y, Yuval G, Zyss E, Izawa T 2021 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 13-22, 2021 p154

    [6]

    Liao F, Zhou F and Chai Y 2021 J. Semicond. 42 013105

    [7]

    Kang L 2023 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [康磊 2023 博士学位论文(北京:中国科学院大学)]

    [8]

    Wojtkiewicz M, Rae B, Henderson R K 2024 IEEE Trans. Electron Devices 71 3470

    [9]

    Bi Y H, Bian D J, Li M, Xu Y 2025 Chin. Phys. B 34 068501

    [10]

    Kagawa K, Horio M, Pham A N, Ibrahim T, Okihara S, Furuhashi T, Takasawa T, Yasutomi K, Kawahito S, Nagahara H 2022 Sensors 22 1953

    [11]

    Guo M H, Chen S S, Gao Z, Yang W L, Bartkovjak P, Qin Q, Hu X Q, Zhou D H, Uchiyama M, Kudo Y, Fukuoka S, Xu C C, Ebihara H, Wang A, Jiang P, Jiang B, Mu B, Chen H, Yang J, Dai T, Suess A 2023 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 19-23, 2023 p90

    [12]

    Ulku A C, Bruschini C, Antolović I M, Kuo Y, Ankri R, Weiss S, Michalet X, Charbon E 2018 IEEE J. Sel. Topics Quantum Electron. 25 6801212

    [13]

    Cao Z X 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [曹中祥 2014 博士学位论文(北京:中国科学院大学)]

    [14]

    Inoue T, Takeuchi S, Kawahito S 2005 Proc. of SPIE Vol.5580 (Bellingham: SPIE) p293

    [15]

    Fossum E R, Hondongwa D B 2014 IEEE J. Electron Devices Soc. 2 33

    [16]

    Wegmann G, Vittoz E A, Rahali F 1987 IEEE J. Solid-State Circuits 22 1091

    [17]

    Yonemoto K, Sumi H 2002 IEEE Trans. Electron Devices 49 746

    [18]

    Shin B, Park S, Shin H 2010 Solid-State Electron. 54 1416

    [19]

    Hu C Z, Zhang B, Xin Y Z, Xie Y Y, Hu P F, Geng L 2023 IEEE Sensors J. 23 14295

    [20]

    Yin R T 2025 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [尹若童 2025 硕士学位论文(北京:中国科学院大学)]

    [21]

    Lee J, van Sieleghem E, Kim H, Genoe J 2022 IEEE Trans. Electron Devices 69 5603

    [22]

    Teranishi N. 2016 IEEE Trans. Electron Devices 63 10

    [23]

    Wang J H, Liu J, Xu Y, Jiang Y L, Wan J 2023 IEEE 15th International Conference on ASIC Nanjing, China, Oct 24-27, 2023 p1

    [24]

    Gu C 2021 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [顾超 2021 硕士学位论文(北京:中国科学院大学)]

    [25]

    Yue X, Fossum E R 2023 Sensors 23 6356

    [26]

    Suzuki M, Sugama Y, Kuroda R, Sugawa S 2020 Sensors 20 1086

    [27]

    Dao V T S, Ngo N, Nguyen A Q, Morimoto K, Shimonomura K, Goetschalckx P, Haspeslagh L, Moor P D, Takehara K, Etoh T G 2018 Sensors 18 3112

    [28]

    Wu L K, D. Bello D S S, Coppejans P, Craninckx J, Suss A, Rosmeulen M, Wambacq P, Borremans J 2018 Sensors 18 3683

    [29]

    Etoh T G, Okinaka T, Takano Y, Takehara K, Nakano H, Shimonomura K, Ando T, Ngo N, Kamakura Y, Dao V T S, Nguyen A Q, Charbon E, Zhang C, Moor P D, Goetschalckx P, Haspeslagh L 2019 Sensors 19 2247

    [30]

    Kramer J 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353) Phoenix-Scottsdale, AZ, USA, May 26-29, 2002 p165

    [31]

    Ryu H E 2019 Conf. on Computer Vision and Pattern Recognition Long Beach, CA, USA, Jun 16-20, 2019

    [32]

    Suh Y, Choi S, Ito M, Kim J, Lee Y, Seo J, Jung H, Yeo D H, Namgung S, Bong J, Yoo S, Shin S H, Kwon D, Kang P, Kim S, Na H, Hwang K, Shin C, Kim J S, Park P K J, Kim J, Ryu H, Park Y 2020 IEEE International Symposium on Circuits and Systems Seville, Spain, Oct 12-14, 2020 p1

    [33]

    Gao Z Y, Zhang D, Shi X P, He Y H, Xu J T 2025 Int. J. Circ. Theor. Appl. 53 1833

    [34]

    Zhang H H 2025 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [章宦慧 2025 博士学位论文(北京:中国科学院大学)]

    [35]

    Kleinfelder S, Lim S H, Liu X, Gamal A E 2001 IEEE J. Solid-State Circuits 36 2049

    [36]

    Zhang H H, Zhang C, Yang X, Wang Z, Shi C, Dou R J, Yu S M, Liu J, Wu N J, Feng P, Liu L Y 2025 J. Semicond. 46 092201

    [37]

    Fossum E R. 2011 Computational Optical Sensing and Imaging Toronto, Canada, July 10-14, 2011

    [38]

    Ma J, Fossum E R. 2015 IEEE J. Electron Devices Soc. 3 73

    [39]

    Ma J, Zhang D X, Elgendy O A, Masoodian S 2021 IEEE Electron Device Lett. 42 891

    [40]

    Tian N 2024 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田娜 2024 博士学位论文(北京:中国科学院大学)]

    [41]

    Morimoto K, Iwata J, Shinohara M, Sekine H, Abdelghafar A, Tsuchiya H, Kuroda Y, Tojima K, Endo W, Maehashi Y, Ota Y, Sasago T, Maekawa S, Hikosaka S, Kanou T, Kato A, Tezuka T, Yoshizaki S, Ogawa T, Uehira K, Ehara A, Inui F, Matsuno Y, Sakurai K, Ichikawa T 2021 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 11-16, 2021 p450

    [42]

    Ito K, Otake Y, Kitano Y, Matsumoto A, Yamamoto J, Ogasahara T, Hiyama H, Naito R, Takeuchi K, Tada T, Takabayashi K, Nakayama H, Tatani K, Hirano T, Wakano T 2020 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 12-18, 2020 p347

    [43]

    Fujisaki Y, Tsugawa H, Sakai K, Kumagai H, Nakamura R, Ogita T, Endo S, Iwase T, Takase H, Yokochi K, Yoshida S, Shimada S, Otake Y, Wakano T, Hiyama H, Hagiwara K, Arakawa M, Matsumoto S, Maeda H, Sugihara K, Takabayashi K, Ono M, Ishibashi K, Yamamoto K 2023 IEEE Symposium on VLSI Technology and Circuits Kyoto, Japan, Jun 11-16, 2023 p1

    [44]

    Ogi J, Kitamura S, Sugaya F, Suzuki J, Magori A, Matsui T, Sumita K, Ushiku Y, Moriyama K, Toshima K, Namise T, Ozawa H, Tsukuda Y, Otake Y, Hiyama H, Matsumoto S, Suzuki A, Koga F 2024 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 7-11, 2024

    [45]

    Matsuo S, Bales T J, Shoda M, Osawa S, Kawamura K, Andersson A, Haque M, Honda H, Almond B, Mo Y, Gleason J, Chow T, Takayanagi I 2009 IEEE Trans. Electron Devices 56 2380

    [46]

    Li Q L 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [李全良 2014 博士学位论文(北京:中国科学院大学)]

    [47]

    Maloberti F 2007 Data converters (The Netherlands: Springer) p178-182

    [48]

    Lee K, Song M, Kim S Y 2025 IEEE International Symposium on Circuits and Systems London, United Kingdom, May 25-28, 2025

    [49]

    Zhang W Z 2025 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [张伟哲 2025 硕士学位论文(北京:中国科学院大学)]

    [50]

    Lim S, Lee J, Kim D, Han G 2009 IEEE Trans. Electron Devices 56 393

    [51]

    Byun S J, Seo J T, Kim T H, Lee J H Kim Y K Baek K H 2024 Electronics 14 1

    [52]

    Lee C C, Flynn M P 2011 IEEE J. Solid-State Circuits 46 859

    [53]

    Hao J Y, Shen Y, Zhang J, Zhang Y B, Liu S B, Zhu Z M 2024 IEEE Trans. Circuits Syst. II: Exp. Briefs 71 16

    [54]

    Kainuma T, Wakamatsu R, Wada K, Takeda T, Ueyama S, Suto H, Miura T, Uemura K, Kimura M, Sakakibara M, Oike Y 2025 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 16-20, 2025 p122

    [55]

    Takatsuka T, Ogi J, Ikeda Y, Hizu K, Inaoka Y, Sakama S, Watanabe I, Ishikawa T, Shimada S, Suzuki J, Maeda H, Toshima K, Nonaka Y, Yamamura A, Ozawa H, Koga F, Oike Y 2024 IEEE J. Solid-State Circuits 59 1137

    [56]

    Sesta V, Incoronato A, Madonini F, Villa F 2023 Measurement 212 112705

    [57]

    Yui T, Hanzawa K, Hosoya M, Liu Y, Yasufuku T, Tanaka Y, Tashiro Y, Tumewu A, Yamane M, Shibata M, Sakada T, Akatsuka K, Matsushita Y, Yamada K, Mori K, Toyoshima T, Sakano Y, Kumagai O, Tsunoji K, Takahashi M 2025 Symposium on VLSI Technology and Circuits Kyoto, Japan, Jun 8-12, 2025 p1

    [58]

    Zhu L, Dong S W, Huang T J, Tian Y H 2019 Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China, July 08-12, 2019 p1432

    [59]

    Zhao J, Xiong R Q, Huang T J 2020 Proceedings of 2020 IEEE International Symposium on Circuits and Systems Seville, Spain, Oct 12-14, 2020

    [60]

    Zheng Y J, Zheng L X, Yu Z F, Shi B X, Tian Y H, Huang T J 2021 Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition Nashville,USA, Jun 20-25, 2021 p6354

    [61]

    Zhao J, Xie J Y, Xiong R Q, Zhang J, Yu Z F, Huang T J 2021 Proceedings of 2021 IEEE International Conference on Computer Vision Montreal, Canada, Oct 10-17, 2021 p2513

    [62]

    Zhu L, Li J N, Wang X, Huang T J, Tian Y H 2021 Proceedings of 2021 IEEE International Conference on Computer Vision Montreal, Canada, Oct 10-17, 2021 p2380

    [63]

    Ma S, Gupta S, Ulku A C, Bruschini C, Charbon E, Gupta M 2020 ACM Trans. Graph. 39 79

    [64]

    Seets T, Ingle A, Laurenzis M, Velten A 2021 Proceedings of the IEEE Winter Conference on Applications of Computer Vision Jan 5-9, 2021 p1944

    [65]

    Muglikar M, Somasundaram S, Dave A, Charbon E, Raskar R, Scaramuzza D 2025 IEEE Trans. Pattern Anal. Mach. Intell. 47 7886

    [66]

    Chai Y, Liao F 2022 Near-sensor and In-sensor Computing (Chapter 5) (Switzerland: Springer) p81–119

    [67]

    Komuro T, Kagami S, Ishikawa M 2004 IEEE J. Solid-State Circuits 39 265

    [68]

    Xu H, Lin N C, Luo L, Wei Q, Wang R S, Zhou C, Yin X Z, Qiao F, Yang H Z 2021 IEEE Trans. Circuits Syst. I: Reg. Papers 69 232

    [69]

    Datta G, Kundu S, Yin Z, Lakkireddy R T, Mathai J, Jacob A P, Beerel P A, Jaiswal A R 2022 Scientific Reports 12 14396

    [70]

    Kaiser M A, Datta G, Wang Z X, Jacob A P, Beerel P A, Jaiswal A R 2023 Front. Neuroinform. 17 1144301

    [71]

    Lee D, Park M, Baek Y, Bae B, Heo J, Lee K 2022 Nat. Commun. 13 5223

    [72]

    Bong K, Chio S, Kim C, Han D, Yoo H J 2018 IEEE J. Solid-State Circuits 53 115

    [73]

    Yang X, Yao C H, Kang L, Luo Q, Qi N, Dou R J, Yu S M, Feng P, Wei Z M, Liu J, Wang K Y, Wu N J, Liu L Y 2024 IEEE J. Solid-State Circuits 59 1883

    [74]

    Yang X, Lei F M, Tian N, Shi C, Wang Z, Yu S M, Dou R J, Feng P, Qi N, Wei Z M, Liu J, Wang K Y, Wu N J, Liu L Y 2025 IEEE J. Solid-State Circuits (Early Access)

    [75]

    Zhao M X, Peng J B, Yu S M, Liu L Y, Wu N J 2022 IEEE Trans. Circuits Syst. Video Technol. 32 1658

    [76]

    Zhang C, Yang X, Yu S M, Dou R J, Liu L Y 2025 IEEE Signal Process. Lett. 32 976

    [77]

    Wang T, Wen J, Lv K, Chen J Z, Wang L, Guo X 2022 Acta Phys. Sin. 71 148702(in Chinese) [王童, 温娟, 吕康, 陈健中, 汪亮, 郭新 2022 物理学报 71 148702]

    [78]

    Jiang B Y, Zhou F C, Chai Y 2022 Acta Phys. Sin. 71 148504(in Chinese) [江碧怡, 周菲迟, 柴扬 2022 物理学报 71 148504]

    [79]

    Tsai T H, Chang K H, Berkovich A, Capoccia R, Chen S, Wang Z, Liu C, Lin Y H, Lai S Y, Hsu H M, Abe H, Mori K, Fukuhara H, Lin C H, Isozaki T, Li WC, Chou W F, Uno M, Ikeno R, Nagamatsu M, Yang G, Wuu S G, Bainbridge L 2025 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 16-20, 2025 p120

  • [1] WEN Tao, MA Yuhang, WANG Dequan, CHEN Haoran, LI Yanfang, XU Yang, WANG Zhiguang. Dual-mode low noise large range magnetic sensor based on giant magnetoimpedance effect. Acta Physica Sinica, doi: 10.7498/aps.74.20241498
    [2] PENG Zhigang, BAI Haojie, LIU Fang, LI Yang, HE Huan, LI Pei, HE Chaohui, LI Yonghong. Effect of proton cumulative radiation on saturation output in CMOS image sensors. Acta Physica Sinica, doi: 10.7498/aps.74.20241352
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241246
    [4] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20211883
    [5] Zhang Wei, Wan Jing, Meng Lie, Luo Yao-Wei, Guo Ming-Rui. Microfluidic refractive index sensor with D-shape fiber and microtube coupling. Acta Physica Sinica, doi: 10.7498/aps.71.20221137
    [6] Feng Jie, Cui Yi-Hao, Li Yu-Dong, Wen Lin, Guo Qi. Influence mechanism and recognition algorithm of CMOS active pixel sensor radiation damage on star sensor star map recognition. Acta Physica Sinica, doi: 10.7498/aps.71.20220894
    [7] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.71.20211838
    [8] Hou Xing-Yu, Guo Chuan-Fei. Sensing mechanisms and applications of flexible pressure sensors. Acta Physica Sinica, doi: 10.7498/aps.69.20200987
    [9] Li Sheng-You, Liu Jia-Rong, Wen Hao, Liu Xiang-Yang, Guo Wen-Xi. Recent advances in silk-based wearable sensors. Acta Physica Sinica, doi: 10.7498/aps.69.20200818
    [10] Cao Ya-Qing, Huang Huo-Lin, Sun Zhong-Hao, Li Fei-Yu, Bai Hong-Liang, Zhang Hui, Sun Nan, Yung C. Liang. Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection. Acta Physica Sinica, doi: 10.7498/aps.68.20190413
    [11] Chao Xing-Bing, Pan Lu-Ping, Wang Zi-Sheng, Yang Feng-Tao, Ding Jian-Ping. Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography. Acta Physica Sinica, doi: 10.7498/aps.68.20181844
    [12] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, doi: 10.7498/aps.65.024212
    [13] Gui Xin, Hu Chen-Chen, Xie Ying, Li Zheng-Ying. Research on distributed intrinsic Fabry-Perot sensors. Acta Physica Sinica, doi: 10.7498/aps.64.050704
    [14] Wang Bo, Li Yu-Dong, Guo Qi, Liu Chang-Ju, Wen Lin, Ma Li-Ya, Sun Jing, Wang Hai-Jiao, Cong Zhong-Chao, Ma Wu-Ying. Research on dark signal degradation in 60Co γ-ray-irradiated CMOS active pixel sensor. Acta Physica Sinica, doi: 10.7498/aps.63.056102
    [15] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, doi: 10.7498/aps.60.054215
    [16] Liu Yu, Zeng Liao-Liao, Lu Yong-Le, Liu Shen, Huang Zhao-Jing. Intensity-modulated bending sensors based on rare-earth-doped fibers. Acta Physica Sinica, doi: 10.7498/aps.60.104218
    [17] Bi Juan, Zhang Xi-He, Ni Xiao-Wu. Mechanism for long pulse laser-induced hard damage to the MOS pixel of CCD image sensor. Acta Physica Sinica, doi: 10.7498/aps.60.114210
    [18] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, doi: 10.7498/aps.58.3821
    [19] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, doi: 10.7498/aps.56.308
    [20] Wang Yi-Ping, Rao Yun-Jiang, Ran Zeng-Ling, Zhu Tao. Unique characteristics of long-period fibre gratings fabricated by high-freque ncy CO2 laser pulses. Acta Physica Sinica, doi: 10.7498/aps.52.1432
Metrics
  • Abstract views:  30
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  04 January 2026
  • /

    返回文章
    返回