搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速微晶硅薄膜沉积过程中的等离子体稳态研究

方家 李双亮 许盛之 魏长春 赵颖 张晓丹

引用本文:
Citation:

高速微晶硅薄膜沉积过程中的等离子体稳态研究

方家, 李双亮, 许盛之, 魏长春, 赵颖, 张晓丹

Analysis on steady plasma process of high-rate microcrystalline silicon by optical emission spectroscopy

Fang Jia, Li Shuang-Liang, Xu Sheng-Zhi, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan
PDF
导出引用
  • 通过光发射光谱监测高速沉积微晶硅薄膜过程中I(Hα*)/I(SiH*) 随沉积时间的变化趋势, 分析高速率微晶硅薄膜纵向晶化率逐渐增大的原因. 通过氢稀释梯度法, 即硅烷浓度梯度和氢气流量梯度法来改善材料的纵向均匀性.结果表明: 硅烷浓度梯度法获得的材料晶化率从沉积300 s时的53%增加到沉积600 s时的62%, 相比于传统方式下纵向晶化率从55%到75%的变化有了明显的改善. 在硅烷耗尽的情况下, 增加氢气流量一方面增加了气体总流量, 使得电子碰撞概率增加, 电子温度降低, 从而降低氢气的分解, 抑制SiHx基团的放氢反应, 同时背扩散现象也得到了一定的缓解, 使得I(Hα*)/I(SiH*) 在沉积过程中逐渐增加的趋势有所抑制, 所制备的材料的纵向晶化率在240 s 后维持在53%-60%范围内, 同样改善了薄膜的纵向结构.
    The ratio of I(Hα*)/I(SiH*), obtained from the real time optical emission spectroscopy (OES) measurement in the high-rate microcrystalline silicon deposition process, as a function of time is used to analyze the cause of increasing crystallinity along the growth direction. Hydrogen dilution gradient method which means silane concentration gradient and hydrogen flow gradient method is adopted to improve vertical structure uniformity of the material. High-quality microcrystalline material around 53%-62% of Xc can be prepared through silane concentration gradient compared with 55%-75% of Xc prepared in the traditional method. In the silane depleted cases, by increasing the hydrogen flow the longitudinal uniformity of the material can be effectively improved. The vertical crystallinity around 53%-60% can be obtained. This is mainly due to the increase of the hydrogen flow that makes the collision probability increased, as a result, electron temperature of plasma reduced. Thus, the decomposition of hydrogen decreases and the reaction of hydrogen annihilation is suppressed. At the same time, the influence of back diffusion of SiH4 is suppressed. The gradually increasing trend of the ratio of I(Hα*)/I(SiH*) is controlled during the deposition of microcrystalline silicon film.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00706, 2011CBA00707);国家高技术研究发展计划(批准号: 2013AA050302);国家自然科学基金(批准号: 60976051);天津市科技支撑计划(批准号: 12ZCZDGX03600);天津市重大科技支撑计划(批准号: 11TXSYGX22100)和高等学校博士学科点专项科研基金(20120031110039)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 60976051), the Science and Technology Support Program of Tianjin, China (Grant No. 12ZCZDGX03600), the Major Science and Technology Support Project of Tianjin, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120031110039).
    [1]

    Shah A V, Meirer J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U 2003 Sol. Energy Mater. Sol. Cells 78 469

    [2]

    Matsuda A 2004 J. Non-cryst. Solids 338-340 1

    [3]

    Guha S 2004 Sol. Energy 77 887

    [4]

    Guo L, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116

    [5]

    Kilper T, van den Donker M N, Carius R, Rech B, Bräuer G, Repmann T 2008 Thin Solid Films 516 4633

    [6]

    van den Donker M N, Schmitz R, Appenzeller W, Rech B, Kessels W M M, van de Sanden M C M 2006 Thin Solid Films 511-512 562

    [7]

    Yamauchi Y, Takatsuka H, Kawamura K, Yamashita N, Fukagawa M, Takeuchi Y 2005 Tech. Rev. Mitsubishi Heavy Ind. 42 1

    [8]

    Sobajima Y, Higuchi T, Chantana J, Toyama T, Sada C, Matsuda A, Okamoto H 2010 Phys. Status Solidi C 7 521

    [9]

    Gao Y T, Zhang X D, Zhao Y, Sun J, Zhu F, Wei C C, Chen F 2006 Chin. Phys. 15 1110

    [10]

    Wronski C R, Collins R W 2004 Sol. Energy 77 877

    [11]

    Lien S Y, Chang Y C, Cho Y S, Chang Y Y, Lee S J 2012 IEEE Trans. Electron Dev. 59 1245

    [12]

    Hou G F, Xue J M, Guo Q C, Sun J, Zhao Y, Geng X H, Li Y G 2007 Chin. Phys. 16 553

    [13]

    Du C C, Wei T C, Chang C H, Lee S L, Liang M W, Huang J R, Wu C H, Shirakura A, Morisawa R, Suzuki T 2012 Thin Solid Films 520 3999

    [14]

    Fukuda Y, Sakuma Y, Fukai C, Fujimura Y, Azuma K, Shirai H 2001 Thin Solid Films 386 256

    [15]

    Zhang X D, Zhao Y, Zhu F, Wei C C, Wu C Y, Gao Y T, Hou G F, Sun J, Geng X H, Xiong S Z 2005 Acta Phys. Sin. 54 445 (in Chinese) [张晓丹, 赵颖, 朱峰, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙建, 耿新华, 熊绍珍 2005 物理学报 54 445]

    [16]

    Feitknecht L, Meier J, Torres P, Zrcher J, Shah A 2002 Sol. Energy Mater. Sol. Cells 74 539

  • [1]

    Shah A V, Meirer J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U 2003 Sol. Energy Mater. Sol. Cells 78 469

    [2]

    Matsuda A 2004 J. Non-cryst. Solids 338-340 1

    [3]

    Guha S 2004 Sol. Energy 77 887

    [4]

    Guo L, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116

    [5]

    Kilper T, van den Donker M N, Carius R, Rech B, Bräuer G, Repmann T 2008 Thin Solid Films 516 4633

    [6]

    van den Donker M N, Schmitz R, Appenzeller W, Rech B, Kessels W M M, van de Sanden M C M 2006 Thin Solid Films 511-512 562

    [7]

    Yamauchi Y, Takatsuka H, Kawamura K, Yamashita N, Fukagawa M, Takeuchi Y 2005 Tech. Rev. Mitsubishi Heavy Ind. 42 1

    [8]

    Sobajima Y, Higuchi T, Chantana J, Toyama T, Sada C, Matsuda A, Okamoto H 2010 Phys. Status Solidi C 7 521

    [9]

    Gao Y T, Zhang X D, Zhao Y, Sun J, Zhu F, Wei C C, Chen F 2006 Chin. Phys. 15 1110

    [10]

    Wronski C R, Collins R W 2004 Sol. Energy 77 877

    [11]

    Lien S Y, Chang Y C, Cho Y S, Chang Y Y, Lee S J 2012 IEEE Trans. Electron Dev. 59 1245

    [12]

    Hou G F, Xue J M, Guo Q C, Sun J, Zhao Y, Geng X H, Li Y G 2007 Chin. Phys. 16 553

    [13]

    Du C C, Wei T C, Chang C H, Lee S L, Liang M W, Huang J R, Wu C H, Shirakura A, Morisawa R, Suzuki T 2012 Thin Solid Films 520 3999

    [14]

    Fukuda Y, Sakuma Y, Fukai C, Fujimura Y, Azuma K, Shirai H 2001 Thin Solid Films 386 256

    [15]

    Zhang X D, Zhao Y, Zhu F, Wei C C, Wu C Y, Gao Y T, Hou G F, Sun J, Geng X H, Xiong S Z 2005 Acta Phys. Sin. 54 445 (in Chinese) [张晓丹, 赵颖, 朱峰, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙建, 耿新华, 熊绍珍 2005 物理学报 54 445]

    [16]

    Feitknecht L, Meier J, Torres P, Zrcher J, Shah A 2002 Sol. Energy Mater. Sol. Cells 74 539

  • [1] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [2] 李新利, 谷锦华, 高海波, 陈永生, 郜小勇, 杨仕娥, 卢景霄, 李瑞, 焦岳超. 椭圆偏振光谱实时在线监测与离线分析微晶硅薄膜的生长. 物理学报, 2012, 61(3): 036802. doi: 10.7498/aps.61.036802
    [3] 高海波, 李瑞, 卢景霄, 王果, 李新利, 焦岳超. 分步法高速沉积微晶硅薄膜. 物理学报, 2012, 61(1): 018101. doi: 10.7498/aps.61.018101
    [4] 郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖. 单室沉积非晶硅/非晶硅/微晶硅三叠层太阳电池的研究. 物理学报, 2011, 60(6): 068801. doi: 10.7498/aps.60.068801
    [5] 李天微, 刘丰珍, 朱美芳. 射频激发热丝化学气相沉积制备硅薄膜过程中光发射谱的研究. 物理学报, 2011, 60(1): 018103. doi: 10.7498/aps.60.018103
    [6] 卢鹏, 侯国付, 袁育杰, 杨瑞霞, 赵颖. n型掺杂层结构对n-i-p型微晶硅电池性能和光致衰退特性的影响. 物理学报, 2010, 59(6): 4330-4336. doi: 10.7498/aps.59.4330
    [7] 申陈海, 卢景霄, 陈永生. 微晶硅薄膜高速沉积及电学性质的研究. 物理学报, 2009, 58(10): 7288-7293. doi: 10.7498/aps.58.7288
    [8] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [9] 彭文博, 刘石勇, 肖海波, 张长沙, 石明吉, 曾湘波, 徐艳月, 孔光临, 俞育德. 微晶硅薄膜带隙态及微结构的研究. 物理学报, 2009, 58(8): 5716-5720. doi: 10.7498/aps.58.5716
    [10] 孙福河, 张晓丹, 王光红, 许盛之, 岳强, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖. 硼对沉积本征微晶硅薄膜特性的影响. 物理学报, 2009, 58(2): 1293-1297. doi: 10.7498/aps.58.1293
    [11] 韩晓艳, 侯国付, 魏长春, 张晓丹, 戴志华, 李贵君, 孙建, 陈新亮, 张德坤, 薛俊明, 赵颖, 耿新华. 高速沉积本征微晶硅的优化及其在太阳电池中的应用. 物理学报, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [12] 韩晓艳, 耿新华, 侯国付, 张晓丹, 李贵君, 袁育杰, 魏长春, 孙建, 张德坤, 赵颖. 高速沉积微晶硅薄膜光发射谱的研究. 物理学报, 2009, 58(2): 1344-1347. doi: 10.7498/aps.58.1344
    [13] 张丽平, 张建军, 张 鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵 颖. H2, He混合稀释生长微晶硅锗薄膜. 物理学报, 2008, 57(11): 7338-7343. doi: 10.7498/aps.57.7338
    [14] 郭学军, 卢景霄, 陈永生, 张庆丰, 文书堂, 郑 文, 申陈海, 陈庆东. 甚高频高速沉积微晶硅薄膜的研究. 物理学报, 2008, 57(9): 6002-6006. doi: 10.7498/aps.57.6002
    [15] 陈永生, 郜小勇, 杨仕娥, 卢景霄, 谷锦华. 沉积温度对微晶硅薄膜结构特性的影响. 物理学报, 2007, 56(7): 4122-4126. doi: 10.7498/aps.56.4122
    [16] 侯国付, 薛俊明, 孙 建, 郭群超, 张德坤, 任慧志, 赵 颖, 耿新华, 李乙钢. 高压PECVD技术沉积硅基薄膜过程中硅烷状态的研究. 物理学报, 2007, 56(2): 1177-1181. doi: 10.7498/aps.56.1177
    [17] 郭群超, 耿新华, 孙 建, 魏长春, 韩晓艳, 张晓丹, 赵 颖. 气体滞留时间对高速沉积的微晶硅薄膜性能的影响分析. 物理学报, 2007, 56(5): 2790-2795. doi: 10.7498/aps.56.2790
    [18] 余云鹏, 林璇英, 林舜辉, 黄 锐. 光照和偏压对微晶硅薄膜室温电导的影响. 物理学报, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [19] 郜小勇, 李 瑞, 陈永生, 卢景霄, 刘 萍, 冯团辉, 王红娟, 杨仕娥. 微晶硅薄膜的结构及光学性质的研究. 物理学报, 2006, 55(1): 98-101. doi: 10.7498/aps.55.98
    [20] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究. 物理学报, 2005, 54(1): 445-449. doi: 10.7498/aps.54.445
计量
  • 文章访问数:  4413
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-01
  • 修回日期:  2013-05-22
  • 刊出日期:  2013-08-05

/

返回文章
返回