-
多晶硅薄膜具有良好的压阻特性,晶粒结构和掺杂浓度决定其压阻特性.一般通过调节掺杂浓度改变压阻参数,但现有的多晶硅薄膜压阻系数与掺杂浓度的理论关系和适用范围不够全面.为了完善多晶硅薄膜压阻理论,基于多晶硅纳米薄膜隧道压阻模型,以及硅价带和空穴电导质量随应力改变的机理,提出了一种p型多晶硅薄膜压阻系数算法.该算法分别求取了晶粒中性区和复合晶界区的压阻系数π11,π12和π44的理论公式,据此可以计算任意择优晶向排列多晶硅的纵向和横向压阻系数.根据材料的结构特性,求取了p型多晶硅纳米薄膜和普通多晶硅薄膜应变因子,绘制了应变因子与掺杂浓度的关系曲线,与测试结果比较,具有较好的一致性.因此,该算法全面和准确,对多晶硅薄膜的压阻特性的改进和应用具有重要意义.The polysilicon thin film piezoresistors are widely used in semiconductor pressure sensors. The polysilicon thin film has good piezoresistance properties, which are determined by the grain structure and doping concentration. The gauge factor of the polysilicon thin film is usually modified according to the relationship between gauge factor and doping concentration. The polysilicon thin films are classified into common polysilicon thin films and polysilicon nanofilms according to their thickness. The common polysilicon thin film thickness is more than 0.3 μm, which has good temperature characteristic, but its piezoresistance coefficient is small. However, the polysilicon nanofilm thickness is less than 0.1 μm, which has good temperature characteristic and high piezoresistance coefficient. The existing piezoresistance theory of the common polysilicon thin film cannot explain reasonably the experimental result of polysilicon nanofilm piezoresistance. Therefore, the tunneling piezoresistance model and an algorithm for the p-type polysilicon nanofilm piezoresistance coefficient were established in 2006. However, this algorithm presents an incomplete fundamental piezoresistance coefficient. In order to improve the polysilicon thin film piezoresistance theory, based on the tunneling piezoresistance model and the mechanism of silicon and the valence band hole conductivity mass with the change of stress, a novel algorithm for the piezoresistance coefficient of the p-type polysilicon thin film is presented. The theoretical formulas for three fundamental piezoresistance coefficients π11, π12 and π44 of the grain neutral and grain boundary regions, are presented respectively. With these formulas for the coefficients, the longitudinal and transverse piezoresistance coefficients for arbitrary crystal direction texture polysilicon can be obtained. According to the structure characteristics, the gauge factors of the p-type polysilicon nanofilm and the common polysilicon thin film are calculated, and then the longitudinal and transverse gauge factors are plotted each as a function of doping concentration, which are compared with the experimental results. According to the experimental results of the polysilicon nanofilm, the grain size is L=30 nm, the grain crystal directions are randomly distributed. The trap density in grain boundary region is Nt=1013 cm-2, the Young's modulus of elastic diaphragm is Y=1.69×1011 Pa, the Poisson ratio of elastic diaphragm is ν=0.062, the grain boundary width is δ=1 nm, and the thickness is 80 nm. The comparison indicates that the gauge factor average error between calculation and experiment is 0.5 times less than the average experimental difference between the maximum and the minimum for each doping concentration. For the common polysilicon thin film, according to the experimental results, its grain size L is 135 nm, thickness is 400 nm, the orientations of crystal grain neutral region are[311],[111] and[110] in the ratio of 49:31:20, i.e., 〈311〉:〈111〉:〈110〉=49:31:20, and the gauge factor calculated result is also good agreement with the experimental result. Therefore, the proposed algorithm is comprehensive and accurate, which is applicable to the p-type common polysilicon film and the polysilicon nanofilm.
-
Keywords:
- polysilicon thin film /
- gauge factor /
- piezoresistance coefficient
[1] Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]
[2] Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]
[3] Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]
[4] Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]
[5] Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]
[6] Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75
[7] Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414
[8] Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256
[9] Smith C S 1954 Phys. Rev. 94 42
[10] Erskine J C 1983 IEEE Trans. Magn. 30 796
[11] French P J, Evens A G R 1984 Electron. Lett. 20 999
[12] Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145
[13] Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67
[14] French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219
[15] Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]
[16] Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871
[17] Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966
[18] Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]
[19] Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]
[20] Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]
[21] Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150
[22] Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 物理学报 60 027101]
[23] Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598
[24] Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]
[25] Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]
[26] Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]
[27] Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]
[28] French P J, Evans A G R 1989 Solid-State Electron. 32 1
-
[1] Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]
[2] Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]
[3] Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]
[4] Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]
[5] Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]
[6] Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75
[7] Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414
[8] Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256
[9] Smith C S 1954 Phys. Rev. 94 42
[10] Erskine J C 1983 IEEE Trans. Magn. 30 796
[11] French P J, Evens A G R 1984 Electron. Lett. 20 999
[12] Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145
[13] Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67
[14] French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219
[15] Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]
[16] Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871
[17] Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966
[18] Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]
[19] Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]
[20] Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]
[21] Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150
[22] Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 物理学报 60 027101]
[23] Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598
[24] Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]
[25] Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]
[26] Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]
[27] Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]
[28] French P J, Evans A G R 1989 Solid-State Electron. 32 1
计量
- 文章访问数: 6456
- PDF下载量: 209
- 被引次数: 0