搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响

王琛 温盼 彭聪 徐萌 陈龙龙 李喜峰 张建华

引用本文:
Citation:

钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响

王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华

Effect of passivation layer on back channel etching InGaZnO thin film transistors

Wang Chen, Wen Pan, Peng Cong, Xu Meng, Chen Long-Long, Li Xi-Feng, Zhang Jian-Hua
PDF
HTML
导出引用
  • 本文制备了氧化硅、聚酰亚胺以及氧化硅-聚酰亚胺堆叠结构钝化层的非晶铟镓锌氧背沟道刻蚀型薄膜晶体管. 与传统氧化硅钝化层薄膜晶体管相比, 聚酰亚胺钝化层薄膜晶体管的电学特性大幅提高, 场效应迁移率从4.7提升至22.4 cm2/(V·s), 亚阈值摆幅从1.6降低至0.28 V/decade, 电流开关比从1.1×107提升至1.5×1010, 负偏压光照稳定性下的阈值电压偏移从–4.8 V下降至–0.7 V. 电学特性的改善可能是由于氢向聚酰亚胺钝化层扩散减少了背沟道的浅能级缺陷.
    Amorphous indium gallium zinc oxide (IGZO) thin film transistors (TFT) are widely used in active-matrix displays because of their excellent stability, low off-current, high field-effect mobility, and good process compatibility. Among IGZO TFT device structures, back channel etching (BCE) is favorable due to low production cost, short channel length and small SD-to-gate capacitance. In this work, prepared are the BCE IGZO TFTs each with the passivation layer of silicon dioxide (SiO2), polyimide (PI) or SiO2-PI stacked structure to study their difference in back channel hydrogen impurity and diffusion behavior. Comparing with the conventional SiO2 passivation BCE TFT, the performance of PI passivation TFT is improved greatly, specifically, the saturation field effect mobility increases from 4.7 to 22.4 cm2/(V·s), subthreshold swing decreases from 1.6 to 0.28 V/decade, and the an on-off current ratio rises dramatically from 1.1×107 to 1.5×1010. After the SiO2 passivation layer is substituted with PI, the I off decreases from 10–11 A to 10–14 A, which indicates that there exist less shallow-level donor states of hydrogen impurities, which might be explained by the following three mechanisms: first, in the film formation process of PI, the direct incorporation of hydrogen-related radicals from SiH4 precursor into the back channel is avoided; second, the hydrogen content in the PI film is lower and harder to diffuse into the back channel; third, the hydrogen impurity of back channel that is introduced by the H2O2-based etchant in the SD etching process could diffuse more easily toward the PI layer. The TFTs with PI passivation layer also shows the less electrical degradation after the annealing treatment at 380 ℃ and better output performance, which confirms less defects and higher quality of the back channel. The bias stabilities of PI devices are improved comprehensively, especially negative bias illumination stability with the threshold voltage shifting from –4.8 V to –0.7 V, which might be attributed to the disappearance of hydrogen interstitial sites and hydrogen vacancies that are charged positively in the back channel. The PI passivation layer is effective to avoid back channel hydrogen impurities of BCE TFT and promises to have broad applications in the display industry.
      通信作者: 李喜峰, lixifeng@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62174105, 61674101)和上海市教育发展基金会和上海市教委(批准号: 18SG38)资助的课题.
      Corresponding author: Li Xi-Feng, lixifeng@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62174105, 61674101) and the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China (Grant No. 18SG38).
    [1]

    朱乐永, 高娅娜, 张建华, 李喜峰 2015 物理学报 64 108501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F J 2015 Acta Phys. Sin. 64 108501Google Scholar

    [2]

    He P, Hong R, Li G, Zou X, Hu W, Lan L, Iñíguez B, Liao L, Liu X J 2022 IEEE Trans. Electron Devices 43 1894Google Scholar

    [3]

    Kwon J Y, Lee D J, Kim K B 2011 Electron. Mater. Lett. 7 1Google Scholar

    [4]

    Kang D H, Kang I, Ryu S H, Jang J 2011 IEEE Electron Device Lett. 32 1385Google Scholar

    [5]

    Bonneville D B, Miller J W, Smyth C, Mascher P, Bradley J D 2021 Appl. Sci. 11 2110Google Scholar

    [6]

    Chowdhury M D H, Mativenga M, Um J G, Mruthyunjaya R K, Heiler G N, Tredwell T J, Jang J 2015 IEEE Trans. Electron Devices 62 869Google Scholar

    [7]

    Jeong S G, Jeong H J, Choi W H, Kim K, Park J S 2020 IEEE Trans. Electron Devices 67 4250Google Scholar

    [8]

    LI G, YANG B-R, LIU C, Lee C Y, Tseng C Y, Lo C C, Xu N 2015 J. Phys. D. 48 475107Google Scholar

    [9]

    郭海泉, 杨正华, 高连勋 2021 应用化学 38 1119Google Scholar

    Guo H Q, Yang Z H, Gao L X 2021 Chinese J. Appl. Chem. 38 1119Google Scholar

    [10]

    Sezer H A, Celik B A 2021 SN Appl. Sci. 1 22Google Scholar

    [11]

    Nakata M, Ochi M, Tsuji H, Takei T, Miyakawa M, Yamamoto T, Fujisaki Y 2019 J. Appl. Phys. 58 090602Google Scholar

    [12]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J High 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [13]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi 216 1800372Google Scholar

    [14]

    Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114Google Scholar

    [15]

    Li M, Huang D, Li M, Zhang W, Xu H, Zou J, Xu M 2019 IEEE Trans. Electron Devices 66 3854Google Scholar

    [16]

    Han K L, Cho H S, Ok K C, Oh S, Park J S 2018 Electron. Mater. Lett. 14 749Google Scholar

    [17]

    Flack W W, Flores G E, Christensen L D H, Newman G 1996 Optical Microlithography IX. SPIE (Santa Clara CA)p169

    [18]

    邵龑, 丁士进 2018 物理学报 67 098502Google Scholar

    Shao Y, Ding S J 2018 Acta Phys. Sin. 67 098502Google Scholar

    [19]

    Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar

    [20]

    Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712Google Scholar

    [21]

    Choi S H, Jang J H, Kim J J, Han M K 2012 IEEE Electron Device Lett. 33 381Google Scholar

    [22]

    Nomura K, Kamiya T, Hosono H 2012 ECS J. Solid State Sci. Technol. 2 5Google Scholar

  • 图 1  SiO2钝化层(a)、SiO2-PI钝化层(b)、PI钝化层(c)BCE TFT的阵列的光学显微镜俯视图; SiO2钝化层(d)、SiO2-PI钝化层(e)、PI钝化层(f)BCE TFT的器件结构示意图

    Fig. 1.  Top view of the array of BCE TFT with the passivation layer of SiO2 (a), SiO2-PI (b) and PI (c) taken by optical microscopy; schematic diagram of the BCE TFT with the passivation layer of SiO2 (d), SiO2-PI (e) and PI (f).

    图 2  SiO2钝化层(a)、SiO2-PI钝化层(c)、PI钝化层(e)BCE TFT制备后的与380 ℃退火后的转移特性; SiO2钝化层(b)、SiO2-PI钝化层(d)、PI钝化层(f)BCE TFT在5.0 V, 7.5 V和10.0 V栅压下的输出特性

    Fig. 2.  Transfer characteristics of as-fabricated and 380 ℃-annealed BCE TFT with the passivation layer of SiO2 (a), SiO2-PI (c) and PI (e); output characteristics under the Vg of 5.0 V, 7.5 V or 10.0 V of BCE TFT with the passivation layer of SiO2 (b), SiO2-PI (d) and PI (f).

    图 3  背沟道的X射线光子能谱(XPS)O 1s分峰图像(a); SiO2钝化层(b)、SiO2-PI钝化层(c)、PI钝化层(d)BCE TFT的背沟道化学动力学过程示意图

    Fig. 3.  Deconvoluted O 1s spectra of back channel (a); schematic diagrams of the chemical dynamic process of the back channel of BCE TFT with the passivation layer of SiO2 (b), SiO2-PI (c) and PI (d).

    图 4  偏压稳定性, Vg = ±20 V, Vd = 0.1 V SiO2钝化层(a)或PI钝化层(b) BCE TFT的负偏压稳定性(NBS); SiO2钝化层(c)或PI钝化层(d) BCE TFT的正偏压稳定性(PBS); SiO2钝化层(e)或PI钝化层(f) BCE TFT的负偏压光照稳定性(NBIS)

    Fig. 4.  Bias stability, Vg = ±20 V, Vd = 0.1 V: NBS of BCE TFT with the passivation layer of SiO2 (a) and PI (b); PBS of BCE TFT with the passivation layer of SiO2 (c) and PI (d); NBIS of BCE TFT with the passivation layer of SiO2 (e) and PI (f).

    图 5  PI钝化层BCE TFT在底部光照(a)或顶部光照(b)下的转移特性退化; SiO2钝化层BCE TFT在底部光照(c)或顶部光照(d)下的转移特性退化

    Fig. 5.  Bottom illumination (a) and top illumination (b) induced degradation of transfer characteristics of BCE TFT with the passivation layer of PI; bottom illumination (c) and top illumination (d) induced degradation of transfer characteristics of BCE TFT with the passivation layer of SiO2.

  • [1]

    朱乐永, 高娅娜, 张建华, 李喜峰 2015 物理学报 64 108501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F J 2015 Acta Phys. Sin. 64 108501Google Scholar

    [2]

    He P, Hong R, Li G, Zou X, Hu W, Lan L, Iñíguez B, Liao L, Liu X J 2022 IEEE Trans. Electron Devices 43 1894Google Scholar

    [3]

    Kwon J Y, Lee D J, Kim K B 2011 Electron. Mater. Lett. 7 1Google Scholar

    [4]

    Kang D H, Kang I, Ryu S H, Jang J 2011 IEEE Electron Device Lett. 32 1385Google Scholar

    [5]

    Bonneville D B, Miller J W, Smyth C, Mascher P, Bradley J D 2021 Appl. Sci. 11 2110Google Scholar

    [6]

    Chowdhury M D H, Mativenga M, Um J G, Mruthyunjaya R K, Heiler G N, Tredwell T J, Jang J 2015 IEEE Trans. Electron Devices 62 869Google Scholar

    [7]

    Jeong S G, Jeong H J, Choi W H, Kim K, Park J S 2020 IEEE Trans. Electron Devices 67 4250Google Scholar

    [8]

    LI G, YANG B-R, LIU C, Lee C Y, Tseng C Y, Lo C C, Xu N 2015 J. Phys. D. 48 475107Google Scholar

    [9]

    郭海泉, 杨正华, 高连勋 2021 应用化学 38 1119Google Scholar

    Guo H Q, Yang Z H, Gao L X 2021 Chinese J. Appl. Chem. 38 1119Google Scholar

    [10]

    Sezer H A, Celik B A 2021 SN Appl. Sci. 1 22Google Scholar

    [11]

    Nakata M, Ochi M, Tsuji H, Takei T, Miyakawa M, Yamamoto T, Fujisaki Y 2019 J. Appl. Phys. 58 090602Google Scholar

    [12]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J High 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [13]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi 216 1800372Google Scholar

    [14]

    Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114Google Scholar

    [15]

    Li M, Huang D, Li M, Zhang W, Xu H, Zou J, Xu M 2019 IEEE Trans. Electron Devices 66 3854Google Scholar

    [16]

    Han K L, Cho H S, Ok K C, Oh S, Park J S 2018 Electron. Mater. Lett. 14 749Google Scholar

    [17]

    Flack W W, Flores G E, Christensen L D H, Newman G 1996 Optical Microlithography IX. SPIE (Santa Clara CA)p169

    [18]

    邵龑, 丁士进 2018 物理学报 67 098502Google Scholar

    Shao Y, Ding S J 2018 Acta Phys. Sin. 67 098502Google Scholar

    [19]

    Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar

    [20]

    Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712Google Scholar

    [21]

    Choi S H, Jang J H, Kim J J, Han M K 2012 IEEE Electron Device Lett. 33 381Google Scholar

    [22]

    Nomura K, Kamiya T, Hosono H 2012 ECS J. Solid State Sci. Technol. 2 5Google Scholar

  • [1] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [4] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [5] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [6] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [7] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [8] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [11] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [12] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [13] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [14] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [15] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性. 物理学报, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [16] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [17] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [20] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
计量
  • 文章访问数:  2602
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-09
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回