搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖

余本海 李盈傧

引用本文:
Citation:

椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖

余本海, 李盈傧

Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses

Yu Ben-Hai, Li Ying-Bin
PDF
导出引用
  • 利用经典系综模型研究了椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 计算结果显示, 沿激光偏振平面长轴方向, 电子对的关联行为依赖于激光强度, 在较高的激光强度下, 关联电子对的动量谱呈正关联, 并且在一、 三象限呈现明显的V-型结构. 在较低的激光强度下, 关联电子对的动量谱呈强烈的反关联行为. 在激光偏振平面短轴方向, 关联电子对的动量谱在不同的激光强度下均呈现强烈的反关联行为. 通过分析非次序双电离的经典运动轨迹,证明末态电子之间的排斥作用对关联电子动量谱在激光偏振平面长轴方向的V-型结构, 以及短轴方向的反关联行为起决定性作用.
    With a classical ensemble model, we investigate the intensity dependence of nonsequential double ionization (NSDI) of argon atoms by elliptically polarized laser pulses. The results show that the correlated behavior of two electrons along the long axis of the laser polarization plane depends on the laser intensity. At the relatively high intensity, the correlated electron momentum spectrum displays a correlated behavior and shows V-like structures in the first and third quadrants. At the relatively low intensity, the correlated electron momentum spectrum shows a strongly anticorrelated behavior. For the different laser intensities, the momentum spectra of two electrons along the short axis of the laser polarization plane all show strongly anticorrelated behaviors. The analysis of the classical trajectories of NSDI shows that the final-state electron repulsion plays a decisive role in both the V-like shape along the long axis of the laser polarization plane and the anticorrelated behavior along the short axis of the laser polarization plane.
    • 基金项目: 国家自然科学基金(批准号: 11005088, 11047145)、 河南省科技计划项目(批准号: 102300410241, 112300410021)和河南省教育厅自然科学研究计划项目(批准号: 2011B140018)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088, 11047145), the Science & Technology Project of Henan Province, China (Grant Nos. 102300410241, 112300410021), and the Scientific Research Foundation of Education Department of Henan Province, China (Grant No. 2011B140018).
    [1]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [2]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [3]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [4]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [5]

    Haan S L, van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [6]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [7]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [8]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [9]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becher W 2000 Phys. Rev. Lett. 84 3791

    [10]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [11]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [12]

    I'Hullier A, Lomper L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [13]

    Huang C, Zhou Y M, Tong A H, Liao Q, Hong W Y, Lu P X 2011 Opt. Express 19 5627

    [14]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [15]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 23303

    [17]

    Zhou Y M, Huang C, Lu P X, 2011 Phys. Rev. A 84 023405

    [18]

    Liu X, Figueira de Morisson Faria C 2004 Phys. Rev. Lett. 92 133006

    [19]

    Huang C, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 14293

    [20]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [22]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2006 Phys. Rev. A 74 063821

    [23]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥 2009 物理学报 58 4908]

    [24]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 011402(R)

    [25]

    Wang X, Eberly J H 2010 New J. Phys. 12 093047

    [26]

    Dietrich P, Burnett N H, Ivanov M, Corkum P B 1994 Phys. Rev. A 50 R3585

    [27]

    Gillen G D, Walker M A, van Woerkom L D 2001 Phys. Rev. A 64 043413

    [28]

    Shvetsov N I, Goreslavski S P, Popruzhenko S V, Becker W 2008 Phys. Rev. A 77 063405

    [29]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408

    [30]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [31]

    Panfili R, Haan S L, Eberly J H 2002 Phys. Rev. Lett. 89 113001

    [32]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [33]

    Haan S L, Smith Z S, Shomsky K N, Plantinga P W 2008 J. Phys. B 41 211002

    [34]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [35]

    Staudent A, Ruiz C, Schröter M, Schröter S, Zeidler D, Weber T, Mechel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [36]

    Rudenko A, de Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003

    [37]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [38]

    Chen Z, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [39]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

  • [1]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [2]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [3]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [4]

    Weber T, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443

    [5]

    Haan S L, van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [6]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [7]

    Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [8]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [9]

    Paulus G G, Grasbon F, Dreischuh A, Walther H, Kopold R, Becher W 2000 Phys. Rev. Lett. 84 3791

    [10]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [11]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X B 2009 Opt. Express 17 5139

    [12]

    I'Hullier A, Lomper L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [13]

    Huang C, Zhou Y M, Tong A H, Liao Q, Hong W Y, Lu P X 2011 Opt. Express 19 5627

    [14]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [15]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 23303

    [17]

    Zhou Y M, Huang C, Lu P X, 2011 Phys. Rev. A 84 023405

    [18]

    Liu X, Figueira de Morisson Faria C 2004 Phys. Rev. Lett. 92 133006

    [19]

    Huang C, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 14293

    [20]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [22]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2006 Phys. Rev. A 74 063821

    [23]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥 2009 物理学报 58 4908]

    [24]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 011402(R)

    [25]

    Wang X, Eberly J H 2010 New J. Phys. 12 093047

    [26]

    Dietrich P, Burnett N H, Ivanov M, Corkum P B 1994 Phys. Rev. A 50 R3585

    [27]

    Gillen G D, Walker M A, van Woerkom L D 2001 Phys. Rev. A 64 043413

    [28]

    Shvetsov N I, Goreslavski S P, Popruzhenko S V, Becker W 2008 Phys. Rev. A 77 063405

    [29]

    Hao X L, Wang G Q, Jia X Y, Li W D, Liu J, Chen J 2009 Phys. Rev. A 80 023408

    [30]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [31]

    Panfili R, Haan S L, Eberly J H 2002 Phys. Rev. Lett. 89 113001

    [32]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [33]

    Haan S L, Smith Z S, Shomsky K N, Plantinga P W 2008 J. Phys. B 41 211002

    [34]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [35]

    Staudent A, Ruiz C, Schröter M, Schröter S, Zeidler D, Weber T, Mechel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [36]

    Rudenko A, de Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003

    [37]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [38]

    Chen Z, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [39]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

  • [1] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [2] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [3] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [4] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [5] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [6] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [7] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [9] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [10] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜. 物理学报, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [11] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [12] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [13] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [14] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [15] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [16] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [17] 张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋. 乙醚团簇在纳秒激光场中的多价电离及其电子能量分布的研究. 物理学报, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [18] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [19] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [20] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
计量
  • 文章访问数:  6127
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-14
  • 修回日期:  2012-07-04
  • 刊出日期:  2012-12-05

椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000
    基金项目: 国家自然科学基金(批准号: 11005088, 11047145)、 河南省科技计划项目(批准号: 102300410241, 112300410021)和河南省教育厅自然科学研究计划项目(批准号: 2011B140018)资助的课题.

摘要: 利用经典系综模型研究了椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 计算结果显示, 沿激光偏振平面长轴方向, 电子对的关联行为依赖于激光强度, 在较高的激光强度下, 关联电子对的动量谱呈正关联, 并且在一、 三象限呈现明显的V-型结构. 在较低的激光强度下, 关联电子对的动量谱呈强烈的反关联行为. 在激光偏振平面短轴方向, 关联电子对的动量谱在不同的激光强度下均呈现强烈的反关联行为. 通过分析非次序双电离的经典运动轨迹,证明末态电子之间的排斥作用对关联电子动量谱在激光偏振平面长轴方向的V-型结构, 以及短轴方向的反关联行为起决定性作用.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回