搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超深亚微米互补金属氧化物半导体器件的剂量率效应

郑齐文 崔江维 王汉宁 周航 余徳昭 魏莹 苏丹丹

引用本文:
Citation:

超深亚微米互补金属氧化物半导体器件的剂量率效应

郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹

Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor process

Zheng Qi-Wen, Cui Jiang-Wei, Wang Han-Ning, Zhou Hang, Yu De-Zhao, Wei Ying, Su Dan-Dan
PDF
导出引用
  • 对0.18 m互补金属氧化物半导体(CMOS)工艺的N型金属氧化物半导体场效应晶体管(NMOSFET)及静态随机存储器(SRAM)开展了不同剂量率下的电离总剂量辐照试验研究. 结果表明: 在相同累积剂量, SRAM的低剂量率辐照损伤要略大于高剂量率辐照的损伤, 并且低剂量率辐照损伤要远大于高剂量率辐照加与低剂量率辐照时间相同的室温退火后的损伤. 虽然NMOSFET 低剂量率辐照损伤略小于高剂量率辐照损伤, 但室温退火后, 高剂量率辐照损伤同样要远小于低剂量率辐照损伤. 研究结果表明0.18 m CMOS工艺器件的辐射损伤不是时间相关效应. 利用数值模拟的方法提出了解释CMOS器件剂量率效应的理论模型.
    Enhancing low dose rate sensitivity (ELDRS) in bipolar device is a major problem of liner circuit radiation hardness prediction for space application. ELDRS is usually attributed to space-charge effect. A key element is the difference in transport rate between holes and protons in SiO2. Interface-trap formation at high dose rate is reduced due to positive charge buildup in the Si/SiO2 interfacial region (due to the trapping of holes and/or protons) which reduces the flow rates of subsequent holes and protons (relative to the low-dose-rate case) from the bulk of the oxide to the Si/SiO2 interface. Generally speaking, the dose rate of metal oxide semiconductor (MOS) device is time dependent when annealing of radiation-induced charge is taken into account. The degradation of MOS device induced by the low dose rate irradiation is the same as that by high dose rate when annealing of radiation-induced charge is taken into account. However, radiation response of new generation MOS device is dominated by charge buildup in shallow trench isolation (STI) rather than gate oxide as older generation device. Unlike gate oxides, which are routinely grown by thermal oxidation, field oxides are produced using a wide variety of deposition techniques. As a result, they are typically thick (100 nm), soft to ionizing radiation, and electric field is far less than that of gate oxide, which is similar to the passivation layer of bipolar device and may lead to ELDRS. Therefore, dose-rate sensitivities of n-type metal oxide semiconductor field effect transistor (NMOSFET) and static random access memory (SRAM) manufactured by 0.18 m complementary metal oxide semiconductor (CMOS) process are explored experimentally and theoretically in this paper. Radiation-induced leakages in NMOSFET and SRAM are examined each as a function of dose rate. Under the worst-case bias, the degradation of NMOSFET is more severe under the low dose rate irradiation than under the high dose rate irradiation and anneal. Moreover, radiation-induced standby current rising in SRAM is more severe under the low dose rate irradiation than under the high dose rate irradiation even when anneal is not considered. The above experimental results reveal that the dose-rate sensitivity of deep sub-micron CMOS process is not related to time-dependent effects of CMOS devices. Mathematical description of the combination between enhanced low dose-rate sensitivity and timedependent effects as applied to radiation-induced leakage in NMOSFET is developed. It has been numerically found that non time-dependent effect of deep sub-micron CMOS device arises due to the competition between enhanced low dose-rate sensitivity in bottom of STI and time-dependent effect at the top of STI. The high dose rate irradiation is overly conservative for devices used in a low dose rate environment. The test method provides an extended room temperature anneal test to allow leakage-related parameters that exceed postirradiation specifications to return to a specified range.
      通信作者: 崔江维, cuijw@ms.xjb.ac.cn
    • 基金项目: 中国科学院西部之光项目(批准号: XBBS201219)资助的课题.
      Corresponding author: Cui Jiang-Wei, cuijw@ms.xjb.ac.cn
    • Funds: Project supported by the West Light Foundation of The Chinese Academy of Sciences, China (Grant No. XBBS201219).
    [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Sharma A K, Sahu K, Brashears S 1996 Radiation Effects Data Workshop 1996, IEEE Indian Wells, USA, 19 July, 1996 p13

    [3]

    Lu W, Ren D Y, Guo Q, Yu X F, Fan L, Zhang G Q, Yan R L 1998 Chin. J. Semicond. 19 374 (in Chinese) [陆妩, 任迪远, 郭旗, 余学峰, 范隆, 张国强, 严荣良 1998 半导体学报 19 374]

    [4]

    Yui C C, McClure S S, Rax B G, Lehman J M, Minto T D, Wiedeman M D 2002 Total Dose Bias Dependency and ELDRS Effects in Bipolar Linear Devices (IEEE: Radiation Effects Data Workshop) pp131-137

    [5]

    Zheng Y Z 2010 Ph. D. Dissertation (Wulumuqi: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [郑玉展 2010 博士学位论文 (乌鲁木齐: 中国科学院新疆理化技术研究所)]

    [6]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5572 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学峰, 何承发 2009 物理学报 58 5572]

    [7]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [8]

    Schroeder J E, Gingerich B L, Bechtel G R 1984 IEEE Trans. Nucl. Sci. 31 1327

    [9]

    James R S, Marty R S, Daniel M F, James A F, Dodd P E, Philippe P, Veronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833

    [10]

    Steven C W, Ronald C L, Jon V O, John M H, Steven C M 2005 IEEE Trans. Nucl. Sci. 52 2602

    [11]

    Johnston A H, Swimm R T, Miyahira T F 2010 IEEE Trans. Nucl. Sci. 57 3279

    [12]

    Ivan S E, Hugh J B, Philippe C A, Bernard G R, Harold P H, Michael L M, Ronald L P 2011 IEEE Trans. Nucl. Sci. 58 2945

    [13]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701

    [14]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C 2013 Acta Phys. Sin. 62 116101 (in Chinese) [郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超 2013 物理学报 62 116101]

    [15]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102

    [16]

    Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F, Lu W, Guo Q, Ren D Y 2015 Chin. Phys. B 24 106106

  • [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Sharma A K, Sahu K, Brashears S 1996 Radiation Effects Data Workshop 1996, IEEE Indian Wells, USA, 19 July, 1996 p13

    [3]

    Lu W, Ren D Y, Guo Q, Yu X F, Fan L, Zhang G Q, Yan R L 1998 Chin. J. Semicond. 19 374 (in Chinese) [陆妩, 任迪远, 郭旗, 余学峰, 范隆, 张国强, 严荣良 1998 半导体学报 19 374]

    [4]

    Yui C C, McClure S S, Rax B G, Lehman J M, Minto T D, Wiedeman M D 2002 Total Dose Bias Dependency and ELDRS Effects in Bipolar Linear Devices (IEEE: Radiation Effects Data Workshop) pp131-137

    [5]

    Zheng Y Z 2010 Ph. D. Dissertation (Wulumuqi: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [郑玉展 2010 博士学位论文 (乌鲁木齐: 中国科学院新疆理化技术研究所)]

    [6]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5572 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学峰, 何承发 2009 物理学报 58 5572]

    [7]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [8]

    Schroeder J E, Gingerich B L, Bechtel G R 1984 IEEE Trans. Nucl. Sci. 31 1327

    [9]

    James R S, Marty R S, Daniel M F, James A F, Dodd P E, Philippe P, Veronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833

    [10]

    Steven C W, Ronald C L, Jon V O, John M H, Steven C M 2005 IEEE Trans. Nucl. Sci. 52 2602

    [11]

    Johnston A H, Swimm R T, Miyahira T F 2010 IEEE Trans. Nucl. Sci. 57 3279

    [12]

    Ivan S E, Hugh J B, Philippe C A, Bernard G R, Harold P H, Michael L M, Ronald L P 2011 IEEE Trans. Nucl. Sci. 58 2945

    [13]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701

    [14]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C 2013 Acta Phys. Sin. 62 116101 (in Chinese) [郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超 2013 物理学报 62 116101]

    [15]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102

    [16]

    Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F, Lu W, Guo Q, Ren D Y 2015 Chin. Phys. B 24 106106

  • [1] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [2] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [3] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [4] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制. 物理学报, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [5] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [6] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型. 物理学报, 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [7] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [8] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [9] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法. 物理学报, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [10] 辛艳辉, 刘红侠, 王树龙, 范小娇. 对称三材料双栅应变硅金属氧化物半导体场效应晶体管二维解析模型. 物理学报, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [11] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [12] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [13] 郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超. 总剂量辐射环境中的静态随机存储器功能失效模式研究. 物理学报, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [14] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [15] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [16] 何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军. 超深亚微米器件总剂量辐射效应三维数值模拟. 物理学报, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [17] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [18] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究. 物理学报, 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [19] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  3515
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-01-26
  • 刊出日期:  2016-04-05

超深亚微米互补金属氧化物半导体器件的剂量率效应

  • 1. 中国科学院新疆理化技术研究所, 中国科学院特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011;
  • 2. 新疆电子信息材料与器件重点实验室, 乌鲁木齐 830011;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 北京微电子技术研究所, 北京 100076
  • 通信作者: 崔江维, cuijw@ms.xjb.ac.cn
    基金项目: 中国科学院西部之光项目(批准号: XBBS201219)资助的课题.

摘要: 对0.18 m互补金属氧化物半导体(CMOS)工艺的N型金属氧化物半导体场效应晶体管(NMOSFET)及静态随机存储器(SRAM)开展了不同剂量率下的电离总剂量辐照试验研究. 结果表明: 在相同累积剂量, SRAM的低剂量率辐照损伤要略大于高剂量率辐照的损伤, 并且低剂量率辐照损伤要远大于高剂量率辐照加与低剂量率辐照时间相同的室温退火后的损伤. 虽然NMOSFET 低剂量率辐照损伤略小于高剂量率辐照损伤, 但室温退火后, 高剂量率辐照损伤同样要远小于低剂量率辐照损伤. 研究结果表明0.18 m CMOS工艺器件的辐射损伤不是时间相关效应. 利用数值模拟的方法提出了解释CMOS器件剂量率效应的理论模型.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回