搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs/GaSb量子阱中太赫兹光电导特性

魏相飞 何锐 张刚 刘向远

引用本文:
Citation:

InAs/GaSb量子阱中太赫兹光电导特性

魏相飞, 何锐, 张刚, 刘向远

Terahertz photoconductivity in InAs/GaSb based quantum well system

Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan
PDF
导出引用
  • 太赫兹技术由于具有重大的科学价值及应用前景而引起了广泛关注,其核心问题是性能优异的室温太赫兹辐射源和探测器研究.本文用半经典的玻尔兹曼方程方法研究了InAs/GaSb量子阱系统中载流子对电磁场的响应,运用平衡方程方法求解玻尔兹曼方程得到了量子阱系统中的光电导,系统地研究了量子阱结构对光电导的影响,揭示了在该量子阱系统中光电导产生的物理机制.研究发现,量子阱结构主要通过调节载流子的能级、浓度和波函数的耦合影响光电导,对称性较好的量子阱结构(8 nm-8 nm)的光电导信号更强,其峰值落在太赫兹区(0.2 THz),并且在低温下器件的性能较好,温度升高则吸收峰略有降低,且光电导峰值发生红移.研究结果表明该量子阱系统可以用作室温太赫兹光电器件.
    Great attention has been paid to the terahertz (THz) technology due to its potential applications, in which THz radiation source and detector with excellent performances at the room temperature are most desired. The semi-classical Boltzmann equation is employed to study the response of electrons and holes to the electromagnetic radiation field in InAs/GaSb based type Ⅱ quantum well system (QWS). The balance equation method is used to solve the Boltzmann equation, and the influences of the structure of the QWS on the photoconductivity is studied in detail to reveal the mechanism of the photoconductivity in the QWS. The photoconductivity is influenced by the carrier density, the subband energy of the carriers and the coupling of the wavefunctions which can be modulated conveniently by the structure of the QWS. In this study, our attention focuses on the influence of the structure of the QWS on the conductivity. When the width of the InAs layer and the GaSb layer are both 8 nm, a sharp peak in photoconductivity is observed at about 0.2 THz due to the electron transition in different layers. The strength of the peak decreases slightly with the increase of the temperature, and a red shift is observed. However, the photoconductivity is not sensitive to the temperature and has good performances at relatively high temperatures up to the room temperature, which indicates that the InAs/GaSb based type-Ⅱ QWS can be used as a THz photoelectric device at room temperature.
      通信作者: 魏相飞, flyxfwei@sina.com
    • 基金项目: 安徽省自然科学基金(批准号:1408085QA13)、安徽省教育厅重点项目(批准号:KJ2017A406,KJ2017A401,KJ2016A749)和皖西学院产学研项目资助的课题.
      Corresponding author: Wei Xiang-Fei, flyxfwei@sina.com
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1408085QA13), the Key Projects of Anhui Provincial Department of Education, China (Grant Nos. KJ2017A406, KJ2017A401, KJ2016A749), and the Program of West Anhui University, China.
    [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X C 2007 Proc. IEEE 95 1514

    [2]

    Cao J C 2006 Physics 35 632 (in Chinese) [曹俊诚 2006 物理 35 632]

    [3]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 物理学报 59 2169]

    [4]

    Tan Z Y, Wan W J, Li H, Cao J C 1983 Phys. Rev. B 28 842

    [5]

    Altarelli M 1983 Phys. Rev. B 28 842

    [6]

    Munekata H, Esaki L, Chang L L 1987 J. Vac. Sci. Technol. B 5 809

    [7]

    Yu L J, Deng G R, Su Y H 2012 Infrared Technology 34 683 (in Chinese) [余连杰, 邓功荣, 苏玉辉 2012 红外技术 34 683]

    [8]

    Wei X F, Xu W, Zeng Z 2007 J. Phys.: Condens. Mat. 19 506209

    [9]

    Norton P 2006 Opto-Electton. Rev. 14 1

    [10]

    Norton P R, Campbell J B, Horn S B, Reago D A 2000 Proc. SPIE 4130 226

    [11]

    Horn S, Norton P, Cincotta T, Stoltz A J, Benson J D, Perconti P, Campbell J 2000 Proc. SPIE 5074 44

    [12]

    Gautam N, Kim H S, Kutty M N, Plis E, Dawson L R, Krishna S 2010 Appl. Phys. Lett. 96 231107

    [13]

    Liu C, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601

    [14]

    Knez I, Du R R 2012 Front. Phys. 7 200

    [15]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. B 86 165439

    [16]

    Knez I, Du R R 2011 Phys. Rev. Lett. 107 136603

    [17]

    Knez I, Du R R 2012 Phys. Rev. Lett. 109 186603

    [18]

    Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501

    [19]

    Yang C H, Wang G X, Zhang C, Ao Z M 2017 J. Appl. Phys. 122 133109

    [20]

    Yang C H, Chen Y Y, Jiang J J, Ao Z M 2016 Solid State Commun. 227 23

    [21]

    Jonsson B, Eng S T 1990 IEEE J. Quantum Elect. 26 2025

    [22]

    Ying H, Zhang F M, Yang Y F, Li C F 2010 Chin. Phys. B 19 040306

    [23]

    He Y, Cao Z Q, Shen Q H 2004 Chin. Phys. Lett. 21 2089

    [24]

    Lei X L, Liu S Y 2000 J. Phys.: Condens. Mat. 12 4655

  • [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X C 2007 Proc. IEEE 95 1514

    [2]

    Cao J C 2006 Physics 35 632 (in Chinese) [曹俊诚 2006 物理 35 632]

    [3]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 物理学报 59 2169]

    [4]

    Tan Z Y, Wan W J, Li H, Cao J C 1983 Phys. Rev. B 28 842

    [5]

    Altarelli M 1983 Phys. Rev. B 28 842

    [6]

    Munekata H, Esaki L, Chang L L 1987 J. Vac. Sci. Technol. B 5 809

    [7]

    Yu L J, Deng G R, Su Y H 2012 Infrared Technology 34 683 (in Chinese) [余连杰, 邓功荣, 苏玉辉 2012 红外技术 34 683]

    [8]

    Wei X F, Xu W, Zeng Z 2007 J. Phys.: Condens. Mat. 19 506209

    [9]

    Norton P 2006 Opto-Electton. Rev. 14 1

    [10]

    Norton P R, Campbell J B, Horn S B, Reago D A 2000 Proc. SPIE 4130 226

    [11]

    Horn S, Norton P, Cincotta T, Stoltz A J, Benson J D, Perconti P, Campbell J 2000 Proc. SPIE 5074 44

    [12]

    Gautam N, Kim H S, Kutty M N, Plis E, Dawson L R, Krishna S 2010 Appl. Phys. Lett. 96 231107

    [13]

    Liu C, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601

    [14]

    Knez I, Du R R 2012 Front. Phys. 7 200

    [15]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. B 86 165439

    [16]

    Knez I, Du R R 2011 Phys. Rev. Lett. 107 136603

    [17]

    Knez I, Du R R 2012 Phys. Rev. Lett. 109 186603

    [18]

    Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501

    [19]

    Yang C H, Wang G X, Zhang C, Ao Z M 2017 J. Appl. Phys. 122 133109

    [20]

    Yang C H, Chen Y Y, Jiang J J, Ao Z M 2016 Solid State Commun. 227 23

    [21]

    Jonsson B, Eng S T 1990 IEEE J. Quantum Elect. 26 2025

    [22]

    Ying H, Zhang F M, Yang Y F, Li C F 2010 Chin. Phys. B 19 040306

    [23]

    He Y, Cao Z Q, Shen Q H 2004 Chin. Phys. Lett. 21 2089

    [24]

    Lei X L, Liu S Y 2000 J. Phys.: Condens. Mat. 12 4655

  • [1] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [2] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [3] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [4] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [5] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [7] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [8] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [10] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [11] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [12] 刘柱, 赵志飞, 郭浩民, 王玉琦. InAs/GaSb量子阱的能带结构及光吸收. 物理学报, 2012, 61(21): 217303. doi: 10.7498/aps.61.217303
    [13] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [14] 杨玉平, 冯帅, 冯辉, 潘学聪, 王义全, 王文忠. CuS纳米粒子在太赫兹波段的光电性质研究. 物理学报, 2011, 60(2): 027802. doi: 10.7498/aps.60.027802
    [15] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [18] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [19] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [20] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
计量
  • 文章访问数:  2962
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 修回日期:  2018-06-19
  • 刊出日期:  2019-09-20

InAs/GaSb量子阱中太赫兹光电导特性

  • 1. 皖西学院电气与光电工程学院, 六安 237012
  • 通信作者: 魏相飞, flyxfwei@sina.com
    基金项目: 安徽省自然科学基金(批准号:1408085QA13)、安徽省教育厅重点项目(批准号:KJ2017A406,KJ2017A401,KJ2016A749)和皖西学院产学研项目资助的课题.

摘要: 太赫兹技术由于具有重大的科学价值及应用前景而引起了广泛关注,其核心问题是性能优异的室温太赫兹辐射源和探测器研究.本文用半经典的玻尔兹曼方程方法研究了InAs/GaSb量子阱系统中载流子对电磁场的响应,运用平衡方程方法求解玻尔兹曼方程得到了量子阱系统中的光电导,系统地研究了量子阱结构对光电导的影响,揭示了在该量子阱系统中光电导产生的物理机制.研究发现,量子阱结构主要通过调节载流子的能级、浓度和波函数的耦合影响光电导,对称性较好的量子阱结构(8 nm-8 nm)的光电导信号更强,其峰值落在太赫兹区(0.2 THz),并且在低温下器件的性能较好,温度升高则吸收峰略有降低,且光电导峰值发生红移.研究结果表明该量子阱系统可以用作室温太赫兹光电器件.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回