-
铁电薄膜由于存在空间反演对称性破缺引起的自发极化, 使得以其为基础的器件在信息存储[1-3]、光电探测[4-8]、自供电传感[9-11]、光能转化[12-15]等领域具有巨大的应用价值和研究潜力. 相较于带隙较大的铁电材料(如LiNbO3, BaTiO3, (Pb,Zr)TiO3等), 铁酸铋(bismuth ferrite, BiFeO3, 简写为BFO)作为一种具有较低带隙(2.2—2.8 eV)的室温多铁材料, 以其为基础的半导体器件近年来成为了磁电、光电多功能器件领域的研究热点之一[16-19]. 其中磁、光、电等多种物理性质之间同时存在的耦合作用带来了丰富而复杂的物理内涵[20-25]. 此外, 由于禁带宽度的限制, 硅光伏电池的光电转换效率在可见的未来很难有更进一步的突破[26-32]. BFO作为室温铁电材料, 具有体光伏效应, 材料内部电畴使其产生的光电压不受禁带宽度影响, 在理论研究基础上, 已有实验证实可以获得比硅光伏电池更高的光电压[12,33-35]. 但较大的电阻使得BFO产生的光生电流较小, 目前还难以在光电池领域得到直接应用, 且其内部中的光电作用机理尚不清楚, 已有的理论尚待进一步证明. 因此, BFO在光电传感器及光伏电池的应用上有很大的发展空间.
近年来, 国内外学者们通过外加电场、光场、磁场、掺杂和构建异质结, 实现了对BFO基薄膜器件物理性能灵活且有效的调控, 使BFO在多功能传感材料、能源材料等领域发挥了重要作用[36-39]. BFO材料中G型反铁磁、铁电畴等丰富的内部微观和介观结构带来了丰富且互相耦合的磁电、光电特性[40,41]. 因此, 基于光电效应, 通过外界条件调控器件的物理效应, 研制出可多场调制、低成本、高灵敏度和高稳定性的光电传感器已成为现今多功能材料和光伏器件领域的一个重要研究方向[38,42-44]. 通过外加电场、掺杂改性和构建复合薄膜调控BFO基薄膜器件的磁、电性能, 可以实现对薄膜光伏性能灵活且有效的调控[45]. 由于外电压的施加极易击穿依靠极化电畴串联产生光生电压的BFO薄膜结构, 因而在实现BFO薄膜光电转换方面, 除了外加电场的调控作用外, 利用薄膜的磁效应, 引入对铁电光伏材料电畴结构影响较为温和的磁场来调控光电性能是研究铁电薄膜光伏效应的另一有效途径. 对磁场效应(magnetic field effects, MFEs)的研究为多功能材料在光电领域的应用提供了新思路[17,23,46-48], 在外磁场调制下, 材料中电致发光、光致发光、光电流、注入电流等强度的响应变化将产生磁电致发光[48]、磁光致发光[49]、磁光电流[50]、磁电导[48,51]等现象, 其磁场效应的值定义为
$ {M}_{\rm MFE}=\dfrac{{I}_{{\rm{B}}}-{I}_{0}}{{I}_{0}}\text{, } $ 式中IB和I0分别表示有、无磁场下的光、电等信号的强度. 本研究通过在导电透明衬底导电玻璃(SnO2:F, FTO)上生长BFO, 以Au为底电极制备出“光电池型”异质结, 并在不同大小和方向的磁场中使用标准太阳光(AM1.5)辐照, 发现BFO薄膜光电流具有随磁场变化的响应特征, 并基于磁性半导体自旋电子理论对不同磁场调制下的光电过程进行了分析. 结果表明磁场对BFO薄膜光电流的增强作用源自于磁性离子在光场作用下产生了自旋光电子, 在磁场作用下增强了散射的自旋相关性, 对多铁材料在磁光电领域的应用研究提供了理论依据.
-
本文使用脉冲激光沉积法在FTO导电衬底上生长BFO薄膜, 沉积时衬底温度为600 ℃, 沉积气氛条件为压强为0.09 mbar(1 mbar = 100 Pa)的氧气环境, 沉积结束后在600 ℃下、0.09 mbar纯氧中进行保温1 h处理, 然后以10 ℃/min的速度缓慢冷却到室温. 用X射线衍射仪(XRD, Cu Kα1, 波长为1.540598 Å)表征BFO薄膜结构; 在样品上方添加方孔掩模板, 通过离子溅射在顶部表面沉积了厚度为100 nm的Au层, 使用铁电综合测试仪测试了Au/BFO/FTO薄膜的铁电性; 使用半导体参数测量系统Keithley SCS-4200对Au/BFO/FTO薄膜的伏安特性进行表征, 并测试了磁场对薄膜I-V特性的调制结果.
-
BFO薄膜XRD图谱如图1(a)所示, 除了BFO和FTO衬底的标准卡片展示的峰之外, 并未发现其他杂峰, 且22.42°和31.76°两处主峰明显, 表明在FTO衬底上的BFO薄膜结晶良好, 呈纯钙钛矿相结构. 此外, 测试了300 K温度下BFO薄膜的Raman光谱(扫描范围50—800 cm–1), 结果如图1(b)所示. 理论上具有菱形R3c结构的BFO薄膜在Γ (Γ = 4A1+9E)点有13个拉曼振动声子模[52]. 图1(b)显示了BFO在76, 139, 170, 219, 251, 286, 346, 447, 467, 517, 608和675 cm–1处有12个峰. 在139, 170, 219和467 cm–1处的BFO峰为A1对称纵向光学(A1(LO))声子的峰[52,53]. 76, 251, 286, 346, 447, 517, 608和675 cm–1处的峰可能与BFO分子的E(TO)模式有关[53]. 薄膜中低于250 cm–1 (76, 139, 170和219 cm–1) 处的峰是由菱形(R3c) BFO相中Bi和Fe原子的振动引起的[52]. 结果表明实验制得的BFO薄膜无其他杂相, 为纯相结构.
图 1 BFO薄膜在300 K温度下的(a) XRD图谱和(b)拉曼光谱
Figure 1. The XRD pattern (a) and Raman spectrum (b) of the BFO thin film at 300 K.
图2(a)为BFO薄膜在300 K时的磁滞回线, 测试所施加外磁场方向平行于薄膜平面. 在磁化过程中, 样品的磁化强度随外磁场增强而增大, 当磁场达到3 kOe (1 Oe = 103/(4π) A/m)时达到饱和状态, 此时磁场继续增强, 试样的磁化强度继续增大, 但增速明显缓慢. 从磁滞回线来看, 样品的剩磁为0.8 emu/cm3 (1 emu/cm3 = 103 A/m), 矫顽力为200 Oe. BFO晶胞中相邻的两个铁原子磁矩相对[111]轴转一定角度造成(111)面内具有净磁矩, 加之实际制备BFO薄膜样品过程中极易生成部分氧空位等缺陷带来的晶格畸变, 使得环境温度低于反铁磁奈尔温度(T < TN = 643 K)时, 反铁磁材料BFO在宏观上也具有微弱的铁磁性[54]. 因同时具有强度差异较小反铁磁性和铁磁性, 使得原本就很复杂的多铁BFO的性质更加复杂, 材料的磁性分类也难以准确定位—它既可视为反铁磁材料, 又可视为铁磁材料.
图 2 BFO薄膜在300 K温度下的(a)磁滞回线图和(b)电滞回线图
Figure 2. The M-H hysteresis loop (a) and the P-E hysteresis loops (b) of the BFO film at 300 K.
BFO薄膜在温度为300 K下的电滞回线如图2(b)所示, 随着薄膜电极间电场强度从10 kV/cm增至50 kV/cm, 在300 K下样品的饱和极化强度从0.198 μC/cm2逐渐增至0.997 μC/cm2. 剩余极化强度从0.066 μC/cm2增至0.337 μC/cm2, 矫顽力场从2.42 kV/cm增至12.45 kV/cm, 具有明显的铁电性. 以上结果表明BFO薄膜具有良好的多铁性能, 这有利于研究BFO铁电光伏效应及其场调制效应的研究.
-
图3为BFO薄膜在黑暗和光照下的J-V曲线对比, 右下角的小图为样品结构和测量实验的示意图, 0 Oe下无光照与有光照的J-V曲线均接近直线, 电流密度与偏压之间为线性关系, 斜率不同表明BFO薄膜非常明显的光场响应. 在1 V偏压下, 光电流和暗电流分别为208.0和20.7 mA/cm2, 此时光电流大小是暗电流的10.05倍.
图 3 室温下样品J-V曲线在无磁场黑暗条件下及光照下随外磁场增强的响应情况
Figure 3. The J-V curves of the sample at room temperature under dark conditions without magnetic field and under light with the increase of external magnetic field.
样品光电导可以表示为
$ \kappa=e\cdot n\cdot \mu_{{\rm{e+h}}}, $ 式中n和μe+h分别为样品的载流子浓度和载流子迁移率, 可知, 载流子浓度是样品光电导的决定因素之一. 在光场作用下, 能量大于BFO带隙的光子可以产生非平衡载流子(光生载流子), 实现对BFO薄膜的光注入. 由于载流子浓度的增大, BFO薄膜的电导率明显增大. 体现为相比于暗场条件, 光场下BFO薄膜的J-V曲线的斜率增长为暗场的10倍, 表明BFO薄膜具有明显的光电导效应.
保持光照条件不变, 随着外磁场增大, J-V曲线斜率逐渐增大, 即相同偏压下光电流大小逐渐增大, 表明光电导在磁场调控下与磁场呈正相关, 证明在BFO薄膜样品中可实现磁光电流效应(magneto-photocurrent effect, MPC).
图4(a) 和图4(b)分别为0 V和1 V偏置下的光电流密度随磁场变化曲线, 当偏置电压为0 V时, 光电流密度J从H = 0时的–40 μA/cm2变为H = 1.3 kOe时的–160 μA/cm2. 即样品具有明显的磁光电流效应.
图 4 在偏压分别为(a), (c) 0 V和(b), (d) 1 V时, 室温下样品的(a), (b)光电流随磁场变化曲线以及(c), (d)
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ 值随磁场变化的响应曲线Figure 4. Change curves of photocurrent (a), (b) and
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ (c), (d) with the alteration of magnetic field for the sample at room temperature with the bias of (a), (c) 0 V and (b), (d) 1 V.从图4(a)和图4(b)可以看出, 在磁化阶段(状态1), 偏置为1 V的光电流随着外加磁场的增大, 从208 mA/cm2增至512 mA/cm2. 随后磁场逐渐减小, 光电流开始减小. 当磁场强度为0 Oe时, 光电流大小保持在256 mA/cm2. 当施加–200 Oe的反向磁场时, 光电流降低到212 mA/cm2. 随着反向磁场的继续增大, 样品被重新磁化, 光电流再次开始增大, 直至磁场增大到–1300 Oe. 随后磁场逐渐减小, 光电流开始减小. 当磁场强度恢复到0 Oe时, 光电流为285 mA/cm2. 从整体曲线上观察, 可以发现样品光电流从下降转回上升趋势时的磁场大小(190—210 Oe)刚好约等于矫顽力(200 Oe).
对于该磁场效应, 可定义在一定偏置电压下, 有磁场和无磁场的光电流密度变化率为
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}}=\dfrac{J\left(H\right)-J\left(0\right)}{J\left(0\right)}\times 100({\text{%}})\text{, } $ 式中, J(H)表示有磁场时的光电流密度, J(0)表示无磁场时的光电流密度. 根据这一定义, 绘制了偏置电压为0 V和1 V时MPC值对磁场的响应关系, 即
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}}, {\rm{V}}} $ -H曲线, 如图4(c)和图4(d)所示. 可以看出, 随着磁场从0增大到1.3 kOe (图4(c) 和图4(d)中的状态1和状态2),${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 从0逐渐增大到232.7%, 当磁场恢复到0时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 的值停留在129.8%, 直至施加反向磁场至–100—–200 Oe时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 方逐渐减小到0附近. 当施加的反向磁场(图4(c) 和图4(d)中的状态3和状态4)继续增大时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 再次增大, 当磁场增大到–1.3 kOe时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 达到最大值209.4%. 而后随着磁场又回到0时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 逐渐下降直至停留在87.9%. 而${D_{{\rm{MPC}}, 1\;{\rm{V}}}}$ 随磁场的变化规律与${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 相似. 结果表明, 正、负方向的外部磁场对BFO薄膜的光电流有很大的改善. 当施加1.3 kOe磁场时,${D_{{\rm{MPC}}, 0\;{\rm{V}}}}$ 值最大, 达到232.7%.如图5(a)所示, Fe在电子自旋交换作用中发生劈裂的能带中, 自旋向上(σ =↑)能带的态密度的能量总体低于自旋向下(σ =
↓)的能带, 使得自旋向上的电子成为多数自旋电子, 其数目高于自旋向下的少数自旋电子, 从而产生电子的自发磁化[55-57]. Fe作为光生载流子的激活中心, 光吸收使得价带上自旋向上的巡游电子受到激发跃迁至导带形成BFO中的多数自旋光电子(emaj), 反之自旋向下的巡游电子则形成少数自旋光电子(emin), 在铁电体内置去极化场或外电压作用下朝着相邻其他离子实行电荷转移, 形成光生电流. 在具有铁磁性的BFO薄膜中, 多数自旋光电子(emaj, σ =↑)和少数自旋光电子(emin, σ =↓)的能量色散关系分别为 $ {E}_{{\rm{m}}{\rm{a}}{\rm{j}}}\left(\boldsymbol{k}\right) $ 和$ {E}_{{\rm{m}}{\rm{i}}{\rm{n}}}\left(\boldsymbol{k}\right) $ , 则[58]图 5 (a) Fe3+简并轨道能量、自旋光电子与电子能带态密度示意图; (b)外磁场作用下Fe3+能带移动示意图
Figure 5. (a) Schematic diagram of the Fe3+ degenerate orbital energy, spin photoelectron and electron band density of state; (b) schematic diagram of the Fe3+ band movement under the external magnetic field.
$ {E}_{{\rm{m}}{\rm{a}}{\rm{j}}}\left(\boldsymbol{k}\right)=\dfrac{{k}^{2}}{2{m}^{*}}-h\text{, } $ $ {E}_{{\rm{m}}{\rm{i}}{\rm{n}}}\left(\boldsymbol{k}\right)=\dfrac{{k}^{2}}{2{m}^{*}}+h\text{, } $ 其中k是电子波矢(普朗克常量已取为1), m*是电子的有效质量, 2h是交换能. 因而电子在费米能级EF处的态密度N(EF)依赖于自旋情况:
$ {N}_{{\rm{m}}{\rm{a}}{\rm{j}}}\left({E}_{{\rm{F}}}\right)=\dfrac{{m}^{*}{k}_{{\rm{F}}}^{{\rm{m}}{\rm{a}}{\rm{j}}}}{{{\rm{\pi }}}^{2}}=\dfrac{{m}^{*}{\left[2{m}^{*}\left({E}_{{\rm{F}}}+h\right)\right]}^{\frac{1}{2}}}{{{\rm{\pi }}}^{2}}\text{, } $ $ {N}_{{\rm{m}}{\rm{i}}{\rm{n}}}\left({E}_{{\rm{F}}}\right)=\dfrac{{m}^{*}{k}_{{\rm{F}}}^{{\rm{m}}{\rm{i}}{\rm{n}}}}{{{\rm{\pi }}}^{2}}=\dfrac{{m}^{*}{\left[2{m}^{*}\left({E}_{{\rm{F}}}-h\right)\right]}^{\frac{1}{2}}}{{{\rm{\pi }}}^{2}} . $ 其中
$ {\boldsymbol{k}}_{{\rm{F}}}^{{\rm{m}}{\rm{a}}{\rm{j}}} $ 和$ {\boldsymbol{k}}_{{\rm{F}}}^{{\rm{m}}{\rm{i}}{\rm{n}}} $ 分别为多数自旋电子和少数自旋电子的费米波矢. 显然,$ {N}_{{\rm{m}}{\rm{a}}{\rm{j}}}\left({E}_{{\rm{F}}}\right) > {N}_{{\rm{m}}{\rm{i}}{\rm{n}}}\left({E}_{{\rm{F}}}\right) $ , 因而光激发产生的多数自旋电子在BFO薄膜中运动时受到的散射(来源于晶界、畴壁等)依赖于电子自旋取向, 则与自旋取向相关的电子有效质量$ {\rm{为}}{m}_{\sigma }^{*} $ , 其不同自旋通道电阻及总电阻分别为$ {\rho }_{{\rm{\sigma }}}=\dfrac{{m}_{{\rm{\sigma }}}^{*}}{{n}_{{\rm{\sigma }}}{e}^{2}{\tau }_{{\rm{\sigma }}}}, $ $ {\rho }_{{\rm{T}}}=\dfrac{{\rho }_{\uparrow }{\rho }_{\downarrow }}{{\rho }_{\uparrow }+{\rho }_{\downarrow }}, $ 其中
$ {n}_{{\rm{\sigma }}} $ 为自旋极化电子数目, e为电子电荷量,$ {\tau }_{{\rm{\sigma }}} $ 为自旋电子散射的弛豫时间, ρ↑与ρ↓分别为自旋向上和自旋向下状态电子的导电通道电阻. 由于光激发产生的多数自旋电子为自旋向上的载流子, 因而BFO薄膜总电阻将与自旋向上电子态密度的大小正相关.由于BFO中自旋极化较弱, 电子所受散射的自旋相关性较弱, 由(9)式可知, 两通道对总电阻率的贡献相近. 如图5(b)所示, 施加外磁场时, BFO层中光电子自旋极化程度增强, 散射的自旋相关性增强, 从而降低了自旋向上或自旋向下通道的电阻率, 由(9)式可知, 这降低了总电阻ρT. 同时, 外加磁场使BFO层内的光电子自旋极化方向趋向一致, 减少了BFO层内的晶界散射和畴壁散射, 从而显著提高了光电流密度.
这种MPC效应随外磁场和磁化强度的变化过程是可逆的, 这有利于其在光电、磁敏元件等多功能新型器件领域的应用.
-
综上所述, 本文利用脉冲激光沉积法在FTO衬底上沉积了BiFeO3薄膜, 构建了以BFO薄膜为吸光层, Au薄膜为电极的太阳能电池结构. 测试结果表明, 该薄膜具有良好的铁磁和铁电性能, 并表现出明显的光电流效应. 在太阳光照条件下, 当施加1 V偏置电压时, 光电流密度J可达208 mA/cm2. 更为重要的是在这种薄膜器件结构中发现了磁场调制光电流效应. 在该MPC效应中, 光电流密度随着有效磁场增大而增大, 且与磁场方向无关. 此外材料中的MPC效应还是可重复的, 光电流与磁化强度正相关, 与磁滞回线形状对比具有良好的映射结果, 即材料被磁化后, 磁场降至0时并未使光电流密度降至初始值, 而在施加一个小的反向磁场后恢复. 在这种薄膜结构中, 当磁场为1.3 kOe时, MPC值可达232.7%. MPC效应研究的实验结果表明, BFO薄膜的磁-光电流效应受光磁电阻效应的影响, 自旋电子由于受到光的激发, 在材料导带运动过程中受到自旋相关散射和晶格散射而具有光磁电阻. 本文研究了BFO薄膜的磁场调制光电流效应, 为调控以光敏材料、磁传感器材料为基础的多铁性薄膜的光电转化特性提供了重要参考, 为MPC效应在光电领域的应用提供了基础.
-
BiFeO3作为一种具有体光伏效应的室温多铁材料, 是近年来多功能材料领域的研究热点. 其中磁、光、电等多种性能之间耦合作用的共存带来了丰富而复杂的物理内涵. 利用脉冲激光沉积在导电玻璃(SnO2:F, FTO)衬底上沉积了BiFeO3薄膜, 实验结果表明, 该薄膜具有良好的铁磁和铁电性能, 并通过磁场实现了对薄膜光电性能的调控. 在标准太阳光照的同时施加1.3 kOe (1 Oe = 103/(4π) A/m)磁场下, 磁-光电流变化率达到232.7%. BiFeO3薄膜中的磁-光电流效应来自于光磁电阻效应, 即光生电子在磁场作用下成为自旋光电子, 在材料导带运动过程中受到自旋相关散射而具有光磁电阻效应; 此外, 磁场作用使这些自旋光电子受到的畴壁散射减弱也进一步增强了磁光电流效应. 本文为磁场、光场调控多铁性薄膜的磁、光、电等物理特性提供了参考, 为多功能光电材料领域的器件研究与应用提供了基础.BiFeO3 (BFO) is a kind of room temperature multiferroic material with bulk photovoltaic effect, and it has been a research hotspot in the field of multifunctional materials in recent years. The coexistence of the coupling among magnetic, optical, electrical properties brings rich and complex physical connotations. In this work, BiFeO3 thin film is deposited on FTO substrate by pulsed laser deposition, and the solar cell structure with BiFeO3 film used as light absorption layer and Au film serving as electrode is constructed. X-ray diffraction and Raman spectra indicate that the BFO film grown on FTO substrate has a pure phase structure. The experimental results of physical properties indicate that the BFO film possesses good ferromagnetic and ferroelectric properties and obvious photoelectric effect. According to the hysteresis loop, the remanence (Mr) of the sample is 0.8 emu/cm3, and the coercivity (Hc) is 200 Oe at 300 K. In terms of ferroelectricity, the saturation polarization intensity of the sample can reach 0.997 μC/cm2, the residual polarization intensity is 0.337 μC/cm2, and the coercive electric field is 12.45 kV/cm. The above results show that the BFO film has good multiferroic properties. Under solar illumination conditions, the photocurrent density up to 208 mA/cm2 is obtained when a bias voltage 1 V is applied. More importantly, magneto-photocurrent (MPC) effect is found in the BFO film. No matter whether the magnetic field starts to increase from the positive direction or the negative direction, the MPC usually changes with the magnitude of magnetization. When a 1.3 kOe magnetic field is applied, the magneto-photocurrent change rate up to 232.7% is observed under standard solar illumination condition. The results show that the photocurrent of BFO films is greatly improved by a positive magnetic field and negative magnetic field. This magneto-photocurrent effect in BFO thin film comes from the photo-magnetoresistance effect, that is, the photogenerated electrons become spin photoelectrons under the action of an external magnetic field and receive spin-dependent scattering during moving in the conductive band of the material, thus producing the photo-magnetoresistance effect. In addition, the magneto-photocurrent effect is further enhanced by weakening the domain wall scattering of the spin electrons by the magnetic field. This work provides a reference for the modulation effect of magnetic field and light field on the magnetic, optical and electrical properties in multiferroics, and presents a foundation for the research and application of devices in the field of multifunctional optoelectronic materials.
-
Keywords:
- bismuth ferrate /
- photovoltaic effect /
- magnetic field /
- spintronic
[1] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990
Google Scholar
[2] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126
Google Scholar
[3] Thakoor S 1992 Appl. Phys. Lett. 60 3319
Google Scholar
[4] 张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709
Google Scholar
Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709
Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862
Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901
Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575
Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492
Google Scholar
[9] Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696
Google Scholar
[10] Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415
Google Scholar
[11] Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950
Google Scholar
[12] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20
Google Scholar
[13] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61
Google Scholar
[14] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509
Google Scholar
[15] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271
Google Scholar
[16] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42
Google Scholar
[17] Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113
Google Scholar
[18] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903
Google Scholar
[19] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905
Google Scholar
[20] Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310
Google Scholar
[21] Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899
Google Scholar
[22] Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004
Google Scholar
[23] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427
Google Scholar
[24] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31
Google Scholar
[25] Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026
Google Scholar
[26] Andy E 2019 Nature 570 429
Google Scholar
[27] Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828
Google Scholar
[28] Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009
Google Scholar
[29] Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820
Google Scholar
[30] Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177
Google Scholar
[31] Martin A G, Stephen P B 2017 Nat. Mater. 16 23
Google Scholar
[32] Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269
Google Scholar
[33] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027
Google Scholar
[34] 蔡田怡, 雎胜 2018 物理学报 67 157801
Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801
Google Scholar
[35] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143
Google Scholar
[36] Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571
Google Scholar
[37] Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779
Google Scholar
[38] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823
Google Scholar
[39] Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001
Google Scholar
[40] Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602
Google Scholar
[41] Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315
Google Scholar
[42] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619
Google Scholar
[43] Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127
Google Scholar
[44] Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623
Google Scholar
[45] Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439
Google Scholar
[46] Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781
Google Scholar
[47] Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708
Google Scholar
[48] Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207
Google Scholar
[49] Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191
Google Scholar
[50] Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500
Google Scholar
[51] Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529
Google Scholar
[52] Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109
Google Scholar
[53] Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202
Google Scholar
[54] Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553
Google Scholar
[55] Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393
Google Scholar
[56] Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655
Google Scholar
[57] Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438
Google Scholar
[58] 翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页
Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)
-
图 4 在偏压分别为(a), (c) 0 V和(b), (d) 1 V时, 室温下样品的(a), (b)光电流随磁场变化曲线以及(c), (d)
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ 值随磁场变化的响应曲线Fig. 4. Change curves of photocurrent (a), (b) and
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ (c), (d) with the alteration of magnetic field for the sample at room temperature with the bias of (a), (c) 0 V and (b), (d) 1 V. -
[1] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990
Google Scholar
[2] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126
Google Scholar
[3] Thakoor S 1992 Appl. Phys. Lett. 60 3319
Google Scholar
[4] 张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709
Google Scholar
Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709
Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862
Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901
Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575
Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492
Google Scholar
[9] Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696
Google Scholar
[10] Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415
Google Scholar
[11] Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950
Google Scholar
[12] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20
Google Scholar
[13] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61
Google Scholar
[14] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509
Google Scholar
[15] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271
Google Scholar
[16] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42
Google Scholar
[17] Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113
Google Scholar
[18] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903
Google Scholar
[19] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905
Google Scholar
[20] Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310
Google Scholar
[21] Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899
Google Scholar
[22] Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004
Google Scholar
[23] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427
Google Scholar
[24] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31
Google Scholar
[25] Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026
Google Scholar
[26] Andy E 2019 Nature 570 429
Google Scholar
[27] Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828
Google Scholar
[28] Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009
Google Scholar
[29] Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820
Google Scholar
[30] Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177
Google Scholar
[31] Martin A G, Stephen P B 2017 Nat. Mater. 16 23
Google Scholar
[32] Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269
Google Scholar
[33] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027
Google Scholar
[34] 蔡田怡, 雎胜 2018 物理学报 67 157801
Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801
Google Scholar
[35] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143
Google Scholar
[36] Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571
Google Scholar
[37] Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779
Google Scholar
[38] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823
Google Scholar
[39] Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001
Google Scholar
[40] Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602
Google Scholar
[41] Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315
Google Scholar
[42] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619
Google Scholar
[43] Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127
Google Scholar
[44] Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623
Google Scholar
[45] Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439
Google Scholar
[46] Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781
Google Scholar
[47] Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708
Google Scholar
[48] Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207
Google Scholar
[49] Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191
Google Scholar
[50] Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500
Google Scholar
[51] Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529
Google Scholar
[52] Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109
Google Scholar
[53] Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202
Google Scholar
[54] Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553
Google Scholar
[55] Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393
Google Scholar
[56] Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655
Google Scholar
[57] Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438
Google Scholar
[58] 翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页
Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)
计量
- 文章访问数: 1012
- PDF下载量: 53
- 被引次数: 0