搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带隙钙钛矿材料及太阳电池的研究进展

崔兴华 许巧静 石标 侯福华 赵颖 张晓丹

引用本文:
Citation:

宽带隙钙钛矿材料及太阳电池的研究进展

崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹

Research progress of wide bandgap perovskite materials and solar cells

Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 金属卤化物钙钛矿太阳电池在近几年获得了巨大进展. 目前单结钙钛矿太阳电池转化效率已经达到25.2%. 经过带隙调整得到的1.63 eV及以上的宽带隙钙钛矿太阳电池是制备多结叠层太阳电池中顶部吸收层的最佳材料. 除高效叠层太阳电池外, 宽带隙钙钛矿在光伏建筑一体化以及光解水制氢等领域中也有着广阔的应用前景. 然而这种钙钛矿薄膜本身缺陷较多, 在光照下还容易发生卤素分离, 这也是限制宽带隙钙钛矿太阳电池发展的关键因素. 本文综述了目前宽带隙钙钛矿及太阳电池的发展现状, 最后对其未来发展前景进行了展望.
    Organic-inorganic metal halide perovskites are a new type of photovoltaic material, they have attracted wide attention and made excellent progress in recent years. The power conversion efficiency of a single-junction perovskite solar cell has been increased to 25.2% just within a decade. Meanwhile, crystalline silicon solar cells account for nearly 90% of industrialized solar cells and have a maximum efficiency of 26.7%, approaching to their theoretical limit. It is more difficult to further improve the efficiency of single junction solar cells. It has been shown that multi-junction tandem solar cells prepared by stacking absorption layers with different bandgaps can better use sunlight, which is one of the most promising strategies to break the efficiency limitation of single-junction solar cells. Due to the bandgap tunability and low-temperature solution processability, perovskites stand out among many other materials for manufacturing multi-junction tandem solar cells. Wide bandgap perovskites with a bandgap of 1.63 eV or above have been combined with narrow band gap inorganic absorption layers such as silicon, copper indium gallium selenide, cadmium telluride or narrow bandgap perovskite to produce high efficiency tandem solar cells. In addition to the promoting of the efficiency improvement of solar cells, the wide bandgap perovskites have broad applications in photovoltaic building integration and photocatalytic fields. Therefore, it is very important to explore and develop high quality wide bandgap perovskite materials and solar cells. Unfortunately, the wide bandgap perovskites have several intrinsic weaknesses, including being more vulnerable to the migration of halogen ions under being illuminated, more defects, and greater possibility of energy level mismatching with the charge transport layers than the narrow bandgap counterparts, which limits the further development of the wide bandgap perovskite solar cells. In this review, the development status of wide bandgap perovskite solar cells is summarized and corresponding strategies for improving their performance are put forward. Furthermore, some personal views on the future development of wide bandgap perovskite solar cells are also presented here in this paper.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500103)、国家自然科学基金(批准号: 61674084)、高等学校学科创新引智计划(111 计划) (批准号: B16027)、天津市科技项目(批准号: 18ZXJMTG00220)和中央高校基本科研业务费(批准号: 63201171)资助的课题
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Fund for the Central Universities, China (Grant No. 63201171)
    [1]

    Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dou L, Yang Y, You J B, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [6]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z, Ye Q, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [7]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [8]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J Hee, Seok S I 2019 Science 366 749Google Scholar

    [9]

    Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulovic V 2019 Energy Environ. Sci. 12 2192Google Scholar

    [10]

    Liu Y H, Akin S, Pan L F, Uchida R, Grätzel M 2019 Sci. Adv. 5 eaaw2543Google Scholar

    [11]

    Zhu P C, Gu S, Luo X, Gao Y, Li S L, Zhu J, Tan H R 2019 Adv. Energy Mater. 10 1903083Google Scholar

    [12]

    Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [13]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [14]

    Beiley Z M, McGehee M D 2012 Energy Environ. Sci. 5 9173Google Scholar

    [15]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [16]

    Albrecht S, Saliba M, Correa Baena J P, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [17]

    Altazin S, Stepanova L, Werner J, Niesen B, Ballif C, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [18]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [19]

    Hu W P, He X, Fang Z M, Lian W T, Shang Y B, Li X C, Zhou W R, Zhang M M, Chen T, Lu Y L, Zhang L J, Ding L M, Yang S F 2020 Nano Energy 68 104362Google Scholar

    [20]

    Jia X, Ding L M 2018 Sci. China Mater. 62 54Google Scholar

    [21]

    Zuo C T, Ding L M 2017 Angew. Chem. Int. Ed. 56 6528Google Scholar

    [22]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [23]

    Hu J N, Cheng Q, Fan R D, Zhou H P 2017 Sol. RRL 1 1700045Google Scholar

    [24]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [25]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [26]

    Al-Ashouri A, Magomedov A, Roß M, et al. 2019 Energy Environ. Sci. 12 3356Google Scholar

    [27]

    Kim D H, Muzzillo C P, Tong J, et al. 2019 Joule 3 1734Google Scholar

    [28]

    Lin R, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [29]

    McMeekin D P, Mahesh S, Noel N K, Klug M T, Lim J, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [30]

    Xue Q F, Xia R X, Brabec C J, Yip H L 2018 Energy Environ. Sci. 11 1688Google Scholar

    [31]

    Henemann A 2008 Renew. Energy Focus 9 14Google Scholar

    [32]

    Shi B, Duan L R, Zhao Y, Luo J S, Zhang X D 2020 Adv. Mater. 32 1806474Google Scholar

    [33]

    Park S, Chang W J, Lee C W, Park S, Ahn H Y, Nam K T 2016 Nat. Energy 2 16185Google Scholar

    [34]

    陈为, 魏伟, 孙予罕 2017 中国科学: 化学 47 1251Google Scholar

    Chen W, Wei W, Sun Y H 2017 Sci. China: Chem. 47 1251Google Scholar

    [35]

    Hu M, Bi C, Yuan Y B, Bai Y, Huang J S 2016 Adv. Sci. 3 1500301Google Scholar

    [36]

    Lin Y Z, Chen B, Zhao F W, Zheng X P, Deng Y H, Shao Y C, Fang Y J, Bai Y, Wang C R, Huang J S 2017 Adv. Mater. 29 1700607Google Scholar

    [37]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [38]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [39]

    Chen C, Song Z N, Xiao C X, Zhao D W, Shrestha N, Li C W, Yang G, Yao F, Zheng X L, Ellingson R J, Jiang C S, Al-Jassim M, Zhu K, Fang G J, Yan Y F 2019 Nano Energy 61 141Google Scholar

    [40]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [41]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip L P, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [42]

    Liu C, Yang Y Z, Zhang C L, Wu S H, Wei L Y, Guo F, Arumugam G M, Hu J L, Liu X Y, Lin J, Schropp R E L, Mai Y H 2020 Adv. Mater. 32 1907361Google Scholar

    [43]

    Palmstrom A F, Eperon G E, Leijtens T, et al. 2019 Joule 3 2193Google Scholar

    [44]

    Xu J X, Boyd C C, Yu Z J, et al. 2020 Science 367 1097Google Scholar

    [45]

    Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C X, Kim J, Tong J H, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H, Shin B 2020 Science 368 155Google Scholar

    [46]

    Ye J Y, Tong J H, Hu J, et al. 2020 Sol. RRL 4 2000082Google Scholar

    [47]

    Duong T, Wu Y L, Shen H P, et al. 2017 Adv. Energy Mater. 7 1700228Google Scholar

    [48]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232Google Scholar

    [49]

    Zhou Y, Wang F, Cao Y, Wang J P, Fang H H, Loi M A, Zhao N, Wong C P 2017 Adv. Energy Mater. 7 1701048Google Scholar

    [50]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [51]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [52]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. 2018 Nature 555 497Google Scholar

    [53]

    Kim J, Saidaminov M I, Tan H R, et al. 2018 Adv. Mater. 30 1706275Google Scholar

    [54]

    Duong T, Pham H, Kho T H, et al. 2019 Adv. Energy Mater. 10 1903553Google Scholar

    [55]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Petar T, Danny B, Grant W, Tan F R, Zhuang T T 2018 Nat. Commun. 9 3100Google Scholar

    [56]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [57]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [58]

    Zhuang J, Mao P, Luan Y G, Yi X H, Tu Z Y, Zhang Y Y, Yi Y P, Wei Y Z, Chen N L, Lin T, Wang F Y, Li C, Wang J Z 2019 ACS Energy Lett. 4 2913Google Scholar

    [59]

    Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. 2019 Adv. Energy Mater. 9 1803699Google Scholar

    [60]

    Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B 2018 Nat. Commun. 9 2225Google Scholar

    [61]

    Zhang J, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q, Liu S Z F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [62]

    Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [63]

    Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B 2019 Adv. Mater. 1 1905143Google Scholar

    [64]

    Xiao Q, Tian J J, Xue Q F, Wang J, Xiong B J, Han M M, Li Z, Zhu Z L, Yip H L, Li Z 2019 Angew. Chem. Int. Ed. 58 17724Google Scholar

    [65]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [66]

    Kim H S, Im S H, Park N G 2014 J. Phys.Chem. C 118 5615Google Scholar

    [67]

    Li Z, Yang M J, Park J S, Wei S H, Berry J, Zhu K 2015 Chem. Mater. 28 284Google Scholar

    [68]

    Chang Y H, Park C H 2004 J. Korean Phys. Soc. 44 889

    [69]

    Anaya M, Correabaena J P, Lozano G L, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo M 2016 J. Mater. Chem. A 4 11214Google Scholar

    [70]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [71]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [72]

    Saliba M, Correa-Baena J P, Grätzel M, Hagfeldt A, Abate A 2017 Angew. Chem. Int. Ed. 57 2554Google Scholar

    [73]

    Unger E L, Bowring A R, Tassone C J, Pool V L, Gold-Parker A, Cheacharoen R, Stone K H, Hoke E T, Toney M F, McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [74]

    Dong Q, Yuan Y B, Shao Y C, Fang Y J, Wang Q, Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [75]

    Lee B, Hwang T, Lee S, Shin B, Park B 2019 Sci. Rep. 9 4803Google Scholar

    [76]

    Zhang C P, Li Z P, Liu J, Xin Y C, Shao Z P, Cui G, Pang S P 2018 ACS Energy Lett. 3 1801Google Scholar

    [77]

    Ma T, Wang S W, Zhang Y W, Zhang K X, Yi L X 2020 J. Mater. Sci. 55 464Google Scholar

    [78]

    Tong G, Ono L K, Qi Y B 2019 Energy Technol. 8 1900961Google Scholar

    [79]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [80]

    Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699Google Scholar

    [81]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [82]

    Mahesh S, Ball J M, Oliver R D J, McMeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [83]

    Levine I, Vera O G, Kulbak M, Ceratti D-R, Rehermann C, Márquez J A, Levcenko S, Unold T, Hodes G, Balberg I, Cahen D, Dittrich T 2019 ACS Energy Lett. 4 1150Google Scholar

    [84]

    Song Z, Chen C, Li C, Awni R A, Zhao D, Yan Y 2019 Semicond. Sci. Technol. 34 093001Google Scholar

    [85]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [86]

    Slotcavage D J, Karunadasa H I, McGehee M D 2016 ACS Energy Lett. 1 1199Google Scholar

    [87]

    Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar

    [88]

    Beal R E, Hagström N Z, Barrier J, Gold-Parker A, Prasanna R, Bush K A, Passarello D, Schelhas L T, Brüning K, Tassone C J, Steinrück H G, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [89]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [90]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204Google Scholar

    [91]

    Liu S, Guan Y J, Sheng Y S, Hu Y, Rong Y G, Mei A Y, Han H W 2020 Adv. Energy Mater. 10 1902492Google Scholar

    [92]

    Gao F, Zhao Y, Zhang X W, You J B 2020 Adv. Energy Mater. 10 1902650Google Scholar

    [93]

    Han J H, Luo S P, Yin X W, Zhou Y, Nan H, Li J B, Li X, Oron D, Shen H P, Lin H 2018 Small 14 1801016Google Scholar

    [94]

    Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [95]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 16142Google Scholar

    [96]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [97]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [98]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 12 4712Google Scholar

    [99]

    Kubicki D, Prochowicz D, Hofstetter A, Saski M, Yadav P, Bi D, Pellet N, Lewiński J, Zakeeruddin S M, Grätzel M 2018 J. Mater. Chem. A 140 3345Google Scholar

    [100]

    Jodlowski A D, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin M K 2017 Nat. Energy 2 972Google Scholar

    [101]

    Chen H, Wei Q, Saidaminov M I, Wang F, Johnston A, Hou Y, Peng Z J, Xu K M, Zhou W J, Liu Z H, Qiao L, Wang X, Xu S W, Li J Y, Long R, Ke Y Q, Sargent E H, Ning Z J 2019 Adv. Mater. 31 e1903559Google Scholar

    [102]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [103]

    Yu H, Wang F, Xie F Y, Li W W, Chen J, Zhao N 2014 Adv. Funct. Mater. 24 7102Google Scholar

    [104]

    Chae J S, Dong Q F, Huang J S, Centrone A 2015 Nano Lett. 15 8114Google Scholar

    [105]

    Gao C, Liu J, Liao C, Ye Q Y, Zhang Y Z, He X L, Guo X W, Mei J, Lau W 2015 RSC Adv. 5 26175Google Scholar

    [106]

    Xie Y L, Yu H Y, Duan J S, Xu L, Hu B 2020 ACS Appl. Mater. Interfaces 12 11190Google Scholar

    [107]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [108]

    Heo D Y, Lee T H, Iwan A, Kavan L, Omatova M, Majkova E, Kamarás K, Jang H W, Kim S Y 2020 J. Power Sources 458 228067Google Scholar

    [109]

    Tong J H, Song Z N, Kim D H, et al. 2019 Science 364 475Google Scholar

    [110]

    Tang G, Yang C, Stroppa A, Fang D N, Hong J W 2017 J. Chem. Phys. 146 224702Google Scholar

    [111]

    Ke W J, Xiao C X, Wang C L, et al. 2016 Adv. Mater. 28 5214Google Scholar

    [112]

    Xu J X, Buin A, Ip A H, et al. 2015 Nat. Commun. 6 7081Google Scholar

    [113]

    Liang P W, Chueh C C, Williams S T, Jen A K Y 2015 Adv. Energy Mater. 5 1402321Google Scholar

    [114]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [115]

    Fang Y J, Bi C, Wang D, Huang J S 2017 ACS Energy Lett. 2 782Google Scholar

    [116]

    Cui C H, Li Y W, Li Y F 2017 Adv. Energy Mater. 7 1601251Google Scholar

    [117]

    Lee J W, Park N G 2019 Adv. Energy Mater. 10 1903249Google Scholar

    [118]

    Lee J W, Kim H S, Park N G 2016 Acc. Chem. Res. 49 311Google Scholar

    [119]

    Xue D J, Hou Y, Liu S C, Wei M, Chen B, Huang Z, Li Z, Sun B, Proppe A H, Dong Y, Saidaminov M I, Kelley S O, Hu J S, Sargent E H 2020 Nat. Commun. 11 1514Google Scholar

    [120]

    Jan S, Robby P, Rolf B 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [121]

    Luo D Y, Yang W Q, Wang Z P, et al. 2018 Science 360 1442Google Scholar

    [122]

    Bu X N, Westbrook R J E, Lanzetta L, Ding D, Chotchuangchutchaval T, Aristidou N, Haque S A 2019 Sol. RRL 3 1800282Google Scholar

    [123]

    Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S 2017 Joule 1 371Google Scholar

    [124]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [125]

    Elgamel H E, Barnett A M, Rohatgi A, Chen Z, Vinckier C, Nijs J, Mertens R 1995 J. Appl. Phys. 78 3457Google Scholar

    [126]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [127]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [128]

    Bian H, Bai D L, Jin Z W, Wang K, Liang L, Wang H R, Zhang J R, Wang Q, Liu S Z F 2018 Joule 2 1500Google Scholar

    [129]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [130]

    Zhao D W, Ding L M 2020 Sci. Bull. 65 1144Google Scholar

    [131]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [132]

    Shen H P, Omelchenko S T, Jacobs D A, et al. 2018 Sci. Adv. 4 eaau9711Google Scholar

    [133]

    Hou F H, Yan L L, Shi B, et al. 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [134]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [135]

    Sahli F, Kamino B A, Werner J, et al. 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [136]

    Fan R D, Z N, Zhang L, Yang R, Meng Y, Li L W, Guo T, Chen Y H, Xu Z Q, Zheng G H J, Huang Y, Li L, Qin L, Qiu X H, Chen Q, Zhou H P 2017 Sol. RRL 1 1700149Google Scholar

    [137]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [138]

    Zhu S J, Y X, Ren Q S, et al. 2018 Nano Energy 45 280Google Scholar

    [139]

    Zhu S J, Hou F H, Huang W, et al. 2018 Sol. RRL 2 1800176Google Scholar

    [140]

    Hou F H, Han C, Isabella O, et al. 2019 Nano Energy 56 234Google Scholar

    [141]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [142]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H-P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [143]

    Marko Jošt, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B, Albrecht S 2018 Energy Environ. Sci. 11 3511Google Scholar

    [144]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [145]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [146]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [147]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [148]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [149]

    Li Z, Xiao C X, Yang Y, et al. 2017 Energy Environ. Sci. 10 1234Google Scholar

  • 图 1  宽带隙钙钛矿太阳电池性能统计图(Eg ≥ 1.63 eV, PCE > 15%) (a) VOCEg之间的关系, 红色阴影部分表示的是qVOCEg的比值小于0.75, 其中q表示单位电荷量; (b) PCE和Eg之间的关系

    Fig. 1.  Performance statistics of WBG-PSCs (Eg ≥ 1.63 eV, PCE > 15%): (a) Relationship between VOC and Eg. The red shaded part indicates that the ratio between qVOC and Eg is less than 0.75, where q represents the unit charge; (b) relationship between PCE and Eg.

    图 2  (a)钙钛矿结构; (b)不同钙钛矿所对应的容差因子图以及相应的晶体结构[67]

    Fig. 2.  (a) Structure of perovskite; (b) corresponding tolerance factor and crystal structure of different perovskites[67].

    图 3  (a) MAPb(BrxI1–x)3的紫外可见吸收光谱、不同颜色钙钛矿薄膜照片以及带隙随Br含量变化的函数图[70]; (b) FAPb(Br1–yIy)3的紫外可见吸收光谱和光致发光(PL)光谱[71]; (c) CsPb(BrzI1–z)3的钙钛矿溶液和对应的光致发光(PL)谱[79]

    Fig. 3.  (a) UV-visible absorption spectra, photos of perovskite films with different colors, as well as functional graph between bandgap and bromine content of MAPb(BrxI1–x)3[70]; (b) UV-visible absorption spectra and photoluminescence (PL) spectra of FAPb(Br1–yIy)3[71]; (c) photos of CsPb(BrzI1–z)3 solutions and corresponding PL spectra[79].

    图 4  (a)卤素离子在光照下发生迁移和团簇示意图[90]; (b) MAPb(Br0.4I0.6)3在光照下的光致发光(PL)光谱, 插图表示初始PL增长率的温度依赖性[85]; (c)在约50 mW /cm2的条件下, MAPb(Br0.4I0.6)3膜在白光浸泡5 min前(黑色线)、后(红色线)的XRD图谱, 将MAPb(Br0.2I0.8)3膜(绿色虚线)和MAPb(Br0.7I0.3)3膜(棕色虚线)的XRD图谱进行比较[85]

    Fig. 4.  (a) Schematic illustration of halogen ion migration and clusters under light[90]; (b) photoluminescence (PL) spectra of MAPb(Br0.4I0.6)3 under light. The illustration shows the temperature dependence of the initial PL growth rate[85]; (c) the XRD pattern of MAPb(Br0.4I0.6)3 film before (black) and after (red) white-light soaking for 5 min at about 50 mW/cm2. XRD patterns of the MAPb(Br0.2I0.8)3 film (dashed green) and the MAPb(Br0.7I0.3)3 film (dashed brown) are included for comparison[85].

    图 5  (a) APbI3钙钛矿的容差因子[56]; (b) FACs基钙钛矿光稳定性明显提高[57]; (c) CsxFA1–xPb(BryI1–y)3材料中的带隙和VOC 变化[37]; (d) K+钝化作用示意图[52]

    Fig. 5.  (a) Tolerance factor of APbI3[56]; (b) FACs-based perovskite light stability was improved obviously[57]; (c) changes of Eg and VOC in the CsxFA1–xPb(BryI1–y)3 compositions[37]; (d) schematic of K+ passivation[52].

    图 6  (a) 3种阳离子的分子构型以及MA+空间旋转的示意图[55]; (b) CsFA和CSMAFA钙钛矿太阳电池最佳J-V曲线和EQE曲线[55]; (c) Cs+和GA+混合到钙钛矿晶格以及对带隙的调控曲线[102]; (d) DMA+对钙钛矿带隙的调整[43]

    Fig. 6.  (a) The molecular configurations of the three cations and the rotation of MA+ in space[55]; (b) J-V and EQE curves of the best-performing CsFA and CsMAFA PSCs[55]; (c) Cs+ and GA+ are mixed into the perovskite lattice and the tuning curves of the Eg[102]; (d) DMA+ adjusts the Eg of perovskite[43].

    图 7  基于MACl以及MAH2PO2添加剂的钙钛矿薄膜SEM图像[40]

    Fig. 7.  SEM images of perovskite films based on MACl and MAH2PO2 additives[40].

    图 8  三卤化物钙钛矿的光稳定性 (a), (b)对照组钙钛矿薄膜(Cs25Br20)经过10倍和100倍太阳光照20 min后的PL光谱, 箭头表示PL峰位随时间变化的方向; (c)对照组薄膜的光谱中心随时间的移动, 在更强光照下, 红移变得更加明显; (d), (e)三卤钙钛矿薄膜(Cs25Br20+Cl3)分别经过10倍和100倍太阳光照20 min后的PL光谱; (f)三卤钙钛矿薄膜的光谱中心随时间的移动, 在更强光照下, 蓝移变得更加明显[44]

    Fig. 8.  Light stability of triple-halide perovskite: (a), (b) PL spectra of control perovskite films (Cs25Br20) under 10-sun and 100-sun illumination for 20 min, respectively. Arrows indicate the direction of the PL shift over time; (c) the shift of the spectral centroids of control films over time. The red shift becomes more obvious under higher injection; (d), (e) PL spectra of triple-halide perovskites (Cs22Br15+Cl3) under 10-sun and 100-sun illumination for 20 min, respectively; (f) the shift of the spectral centroids of triple-halide perovskites over time. The blue shift becomes more obvious under higher injection[44].

    图 9  (a)硫氰酸铅添加剂和DMF溶剂辅助退火对钙钛矿薄膜性能的改善[50]; (b), (c)阴离子工程的钙钛矿太阳电池的器件性能和光稳定性[45]

    Fig. 9.  (a) Performance improvement of perovskite film by adding Pb(SCN)2 and DMF solvent assisted annealing[50]; (b), (c) the device performance and stability of PSCs with anion engineering[45].

    图 10  (a)非加快反溶剂萃取(左)和加快反溶剂萃取(右)制备的钙钛矿薄膜SEM图像[119]; (b)无尿素添加剂(左)和尿素添加剂(右)的700 nm厚钙钛矿薄膜SEM图像[119]; (c)甲酰胺诱导直接形成钙钛矿相, 抑制非钙钛矿相的形成[53]; (d)甲酰胺添加剂提高钙钛矿薄膜结晶质量(右)[53]

    Fig. 10.  (a) SEM images of perovskite films prepared using no-boosted solvent extraction (BSE) (left) and BSE (right) methods [119]; (b) SEM images of thick perovskite films without urea additives (left) and with urea additives (right) [119]; (c) formamide induces direct formation of perovskite phase and inhibits the formation of non-perovskite phase[53]; (d) improvement of perovskite film crystallization quality by formamide additives (right)[53].

    图 11  (a) BA分子与钙钛矿薄膜表面作用示意图[49]; (b)用BABr的异丙醇溶液处理钙钛矿薄膜表面形成二维钙钛矿薄层[59]; (c)经过BABr溶液处理的钙钛矿太阳电池J-V曲线59; (d) BABr溶液处理的钙钛矿太阳电池稳定功率输出曲线(SPCE)59; (e)在连续照明(AM 1.5 G)下测量的最优电池的稳态开路电压(VOC)59; (f), (g)两种电池的开路电压和效率统计[59]

    Fig. 11.  (a) Schematic of the impact of BA modification on the perovskite film[49]; (b) the perovskite film surface was treated with BABr solution to form a 2D perovskite thin layer[59]; (c) J-V and (d) SPCE curve of PSC with and without BABr treatment[59]; (e) steady-state VOC of the best-performing PSC measured under continuous illumination (AM 1.5 G)[59]; (f), (g) VOC and PCE statistics of two kinds of PSCs[59].

    图 12  宽带隙钙钛矿、窄带隙钙钛矿和常用电荷传输层的能带图

    Fig. 12.  Energy band schematic of wide bandgap perovskite, narrow bandgap perovskite, and commonly used charge transport layers.

    图 13  (a) 2T叠层太阳电池的理论效率图[81]; (b), (c) N-I-P型和P-I-N型2T钙钛矿/硅TSCs结构示意图(TCO: 透明导电氧化物, AR coating: 抗反射膜)

    Fig. 13.  (a) Theoretical efficiency limit for 2T tandem solar cells; (b), (c) schematics of device structures for N-I-P and P-I-N 2T perovskite/silicon TSCs (TCO: Transparent Conductive Oxide. AR coating: Antireflective coating).

    表 1  宽带隙钙钛矿太阳电池性能统计(Eg ≥ 1.63 eV, PCE > 15%)

    Table 1.  WBG-PSCs performance statistics (Eg ≥ 1.63 eV and PCE > 15%).

    TypePerovskiteEg/eVVOC/VqVOC/EgJSC/mA·cm–2 FF/%PCE/%Ref.
    p-i-nMAPbI2.5Br0.51.721.0600.6118.3078.216.60 [35]
    p-i-n(FA0.83MA0.17)0.95Cs0.05Pb(I0.6Br0.4)31.711.2100.7119.7077.518.50 [36]
    p-i-nFA0.6Cs0.4Pb(I0.7Br0.3)31.751.1700.6717.5080.016.30 [37]
    p-i-nFA0.83MA0.17Pb(I0.6Br0.4)31.721.1500.6719.4077.017.20 [38]
    p-i-nFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2400.7117.9281.918.19 [39]
    p-i-n(FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)31.681.1700.7021.2079.819.50 [27]
    p-i-nCs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.1900.7319.5080.218.60[40]
    p-i-nCsPbI31.731.1600.6717.7078.616.10[41]
    p-i-nCsPbI2Br1.801.2300.6715.2678.015.19[42]
    p-i-nFA0.6Cs0.3DMA0.1PbI2.4Br0.61.701.2000.7019.6082.019.40 [43]
    p-i-nFA0.75Cs0.25Pb(I0.8Br0.2)31.681.2170.7220.1883.620.42[44]
    p-i-n(FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.671.2000.72NANA20.70[45]
    p-i-n(FA0.64MA0.20Cs0.15)Pb0.99(I0.79Br0.2)31.681.1960.7121.6581.521.00[46]
    n-i-pRb0.05(FA0.75MA0.15Cs0.1)0.95PbI2Br1.731.1200.7119.4073.015.90 [47]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.1600.6618.2778.516.28 [48]
    n-i-pFA0.85Cs0.15Pb(I0.73Br0.27)31.721.2400.7219.8373.718.13 [49]
    n-i-pFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2500.7118.5379.018.27 [50]
    n-i-pMAPb(Br0.2I0.8)31.721.1200.6517.3082.315.90 [51]
    n-i-pK0.1(Cs0.06FA0.79MA0.15)0.9Pb(I0.4Br0.6)31.781.2300.6917.9079.017.50 [52]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.2300.7018.3479.017.80 [53]
    n-i-pCs0.17FA0.83PbI2.2Br0.81.721.2700.7419.3077.418.60 [54]
    n-i-pCs0.12MA0.05FA0.83Pb(I0.6Br0.4)31.741.2500.7219.0081.519.10 [55]
    n-i-pRb5(Cs5MAFA)95Pb(I0.83Br0.17)31.631.2400.7622.8081.021.60 [56]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.741.2000.7019.4075.117.00 [57]
    n-i-pFA0.17Cs0.83PbI2.2Br0.81.721.2440.7219.8075.018.60 [51]
    n-i-pCs0.2FA0.8Pb(I0.75Br0.25)31.651.2200.7421.2080.520.70 [55]
    n-i-pBA0.09(FA0.83 Cs0.17)0.91Pb(I0.6Br0.4)31.721.1800.6919.8073.017.30 [38]
    n-i-pFA0.15Cs0.85Pb(I0.73Br0.27)31.721.2400.7219.8373.718.10 [58]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)3 1.721.3100.7619.3078.019.50 [59]
    n-i-pRb0.05Cs0.095 MA0.1425 FA0.7125PbI2Br1.721.2050.7018.0078.917.10 [54]
    n-i-pCsPbI31.731.0800.6218.4179.3215.71 [60]
    n-i-pCsPbI2Br1.801.2300.6816.7977.8116.07 [61]
    n-i-pβ-CsPbI31.681.1100.6620.2382.018.40 [62]
    n-i-pCsPbI3-xBrx1.771.2340.6918.3082.518.64 [63]
    n-i-pCsPbI2Br1.801.2700.7115.4079.015.50 [64]
    注: NA表示文献中没有给出具体数值; FF表示填充因子.
    下载: 导出CSV

    表 2  钙钛矿中常用离子有效半径[56,72]

    Table 2.  Effective radius of commonly used ions in perovskite[56,72].

    序号钙钛矿中常用离子有效半径R/pm
    1胍离子(GA+)278
    2二甲胺离子(DMA+)272
    3甲脒离子(FA+)253
    4甲胺离子(MA+)217
    5铯离子(Cs+)167
    6铷离子(Rb+)152
    7钾离子(K+)138
    8钠离子(Na+)102
    9铅离子(Pb2+)119
    10锡离子(Sn2+)112
    11碘离子(I)220
    12溴离子(Br)196
    13氯离子(Cl)181
    下载: 导出CSV

    表 3  近年来典型的2T钙钛矿/硅TSCs的详细性能参数总结

    Table 3.  Summary of detailed performance of typical 2T perovskite/silicon TSCs in recent years.

    Type Perovskite Eg/eV VOC/V Jsc/mA·cm–2 FF/% PCE/% Year Area/cm2 Ref.
    N-I-PMAPbI31.611.58011.5075.0013.7020151.00[15]
    FA0.83MA0.17Pb(I0.84Br0.16)31.631.78514.0079.5019.9020160.16[133]
    MAPbI31.601.69215.8079.9021.4020160.17[134]
    MAPbI31.601.70116.1070.1019.2020161.22[134]
    Cs0.19MA0.81PbI31.591.75118.8077.1022.7020180.25[135]
    Cs0.19MA0.81PbI31.591.77916.5074.1021.7020181.43[135]
    Cs0.19FA0.81Pb(I0.78Br0.22)31.631.76916.5065.4019.10201812.96[135]
    MA0.37FA0.48Cs0.15PbI2.01Br0.991.691.70315.2679.2020.5720170.03[136]
    FA0.5MA0.38Cs0.12PbI2.04Br0.961.691.65516.5081.1022.2220180.06[137]
    FA0.75MA0.25 Pb(I0.76B0.24)31.651.71015.4971.0018.8120180.13[138]
    Cs0.08FA0.74MA0.18Pb(I0.88Br0.12)31.651.78017.8275.0023.7320180.13[139]
    Cs0.1(FA0.75MA0.25)0.9Pb(I0.78Br0.22)31.671.83016.7470.0021.3120190.13[133]
    Cs 0.08FA0.69MA0.23Pb(I0.78Br22)31.671.75016.8974.1821.9320190.13[140]
    CsRbFAMAPbI3-xBrx 1.621.76317.8078.1024.5020181.00[132]
    P-I-NCs0.17FA0.83Pb(Br0.17I0.83)31.631.65018.1079.0023.6020171.00[141]
    FA 0.75Cs0.25Pb(I0.8Br0.2)31.681.77018.4077.0025.0020181.00[142]
    Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)31.601.76018.5078.5025.5020180.81[143]
    CsxFA1-xPb(I, Br)31.601.78819.5073.1025.2020181.42[144]
    CsxFA1-x Pb(I, Br)31.601.74119.5074.7025.4020181.42[145]
    Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.80017.8079.4025.4020180.49[40]
    Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)31.631.79219.0274.6025.4320191.00[146]
    Cs0.1MA0.9Pb(I0.9Br0.1)31.601.82019.2075.3026.202020NA[147]
    Cs 0.25FA0.75Pb(I0.85Br0.15Cl0.05)31.671.89019.1075.3027.0420201.00[44]
    Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)31.681.70019.8077.0025.7020200.83[46]
    (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.681.81818.9076.4026.2020201.00[45]
    注: NA表示文献中没有给出具体数值.
    下载: 导出CSV
  • [1]

    Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dou L, Yang Y, You J B, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [6]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z, Ye Q, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [7]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [8]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J Hee, Seok S I 2019 Science 366 749Google Scholar

    [9]

    Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulovic V 2019 Energy Environ. Sci. 12 2192Google Scholar

    [10]

    Liu Y H, Akin S, Pan L F, Uchida R, Grätzel M 2019 Sci. Adv. 5 eaaw2543Google Scholar

    [11]

    Zhu P C, Gu S, Luo X, Gao Y, Li S L, Zhu J, Tan H R 2019 Adv. Energy Mater. 10 1903083Google Scholar

    [12]

    Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [13]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [14]

    Beiley Z M, McGehee M D 2012 Energy Environ. Sci. 5 9173Google Scholar

    [15]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [16]

    Albrecht S, Saliba M, Correa Baena J P, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [17]

    Altazin S, Stepanova L, Werner J, Niesen B, Ballif C, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [18]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [19]

    Hu W P, He X, Fang Z M, Lian W T, Shang Y B, Li X C, Zhou W R, Zhang M M, Chen T, Lu Y L, Zhang L J, Ding L M, Yang S F 2020 Nano Energy 68 104362Google Scholar

    [20]

    Jia X, Ding L M 2018 Sci. China Mater. 62 54Google Scholar

    [21]

    Zuo C T, Ding L M 2017 Angew. Chem. Int. Ed. 56 6528Google Scholar

    [22]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [23]

    Hu J N, Cheng Q, Fan R D, Zhou H P 2017 Sol. RRL 1 1700045Google Scholar

    [24]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [25]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [26]

    Al-Ashouri A, Magomedov A, Roß M, et al. 2019 Energy Environ. Sci. 12 3356Google Scholar

    [27]

    Kim D H, Muzzillo C P, Tong J, et al. 2019 Joule 3 1734Google Scholar

    [28]

    Lin R, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [29]

    McMeekin D P, Mahesh S, Noel N K, Klug M T, Lim J, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [30]

    Xue Q F, Xia R X, Brabec C J, Yip H L 2018 Energy Environ. Sci. 11 1688Google Scholar

    [31]

    Henemann A 2008 Renew. Energy Focus 9 14Google Scholar

    [32]

    Shi B, Duan L R, Zhao Y, Luo J S, Zhang X D 2020 Adv. Mater. 32 1806474Google Scholar

    [33]

    Park S, Chang W J, Lee C W, Park S, Ahn H Y, Nam K T 2016 Nat. Energy 2 16185Google Scholar

    [34]

    陈为, 魏伟, 孙予罕 2017 中国科学: 化学 47 1251Google Scholar

    Chen W, Wei W, Sun Y H 2017 Sci. China: Chem. 47 1251Google Scholar

    [35]

    Hu M, Bi C, Yuan Y B, Bai Y, Huang J S 2016 Adv. Sci. 3 1500301Google Scholar

    [36]

    Lin Y Z, Chen B, Zhao F W, Zheng X P, Deng Y H, Shao Y C, Fang Y J, Bai Y, Wang C R, Huang J S 2017 Adv. Mater. 29 1700607Google Scholar

    [37]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [38]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [39]

    Chen C, Song Z N, Xiao C X, Zhao D W, Shrestha N, Li C W, Yang G, Yao F, Zheng X L, Ellingson R J, Jiang C S, Al-Jassim M, Zhu K, Fang G J, Yan Y F 2019 Nano Energy 61 141Google Scholar

    [40]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [41]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip L P, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [42]

    Liu C, Yang Y Z, Zhang C L, Wu S H, Wei L Y, Guo F, Arumugam G M, Hu J L, Liu X Y, Lin J, Schropp R E L, Mai Y H 2020 Adv. Mater. 32 1907361Google Scholar

    [43]

    Palmstrom A F, Eperon G E, Leijtens T, et al. 2019 Joule 3 2193Google Scholar

    [44]

    Xu J X, Boyd C C, Yu Z J, et al. 2020 Science 367 1097Google Scholar

    [45]

    Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C X, Kim J, Tong J H, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H, Shin B 2020 Science 368 155Google Scholar

    [46]

    Ye J Y, Tong J H, Hu J, et al. 2020 Sol. RRL 4 2000082Google Scholar

    [47]

    Duong T, Wu Y L, Shen H P, et al. 2017 Adv. Energy Mater. 7 1700228Google Scholar

    [48]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232Google Scholar

    [49]

    Zhou Y, Wang F, Cao Y, Wang J P, Fang H H, Loi M A, Zhao N, Wong C P 2017 Adv. Energy Mater. 7 1701048Google Scholar

    [50]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [51]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [52]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. 2018 Nature 555 497Google Scholar

    [53]

    Kim J, Saidaminov M I, Tan H R, et al. 2018 Adv. Mater. 30 1706275Google Scholar

    [54]

    Duong T, Pham H, Kho T H, et al. 2019 Adv. Energy Mater. 10 1903553Google Scholar

    [55]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Petar T, Danny B, Grant W, Tan F R, Zhuang T T 2018 Nat. Commun. 9 3100Google Scholar

    [56]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [57]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [58]

    Zhuang J, Mao P, Luan Y G, Yi X H, Tu Z Y, Zhang Y Y, Yi Y P, Wei Y Z, Chen N L, Lin T, Wang F Y, Li C, Wang J Z 2019 ACS Energy Lett. 4 2913Google Scholar

    [59]

    Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. 2019 Adv. Energy Mater. 9 1803699Google Scholar

    [60]

    Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B 2018 Nat. Commun. 9 2225Google Scholar

    [61]

    Zhang J, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q, Liu S Z F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [62]

    Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [63]

    Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B 2019 Adv. Mater. 1 1905143Google Scholar

    [64]

    Xiao Q, Tian J J, Xue Q F, Wang J, Xiong B J, Han M M, Li Z, Zhu Z L, Yip H L, Li Z 2019 Angew. Chem. Int. Ed. 58 17724Google Scholar

    [65]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [66]

    Kim H S, Im S H, Park N G 2014 J. Phys.Chem. C 118 5615Google Scholar

    [67]

    Li Z, Yang M J, Park J S, Wei S H, Berry J, Zhu K 2015 Chem. Mater. 28 284Google Scholar

    [68]

    Chang Y H, Park C H 2004 J. Korean Phys. Soc. 44 889

    [69]

    Anaya M, Correabaena J P, Lozano G L, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo M 2016 J. Mater. Chem. A 4 11214Google Scholar

    [70]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [71]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [72]

    Saliba M, Correa-Baena J P, Grätzel M, Hagfeldt A, Abate A 2017 Angew. Chem. Int. Ed. 57 2554Google Scholar

    [73]

    Unger E L, Bowring A R, Tassone C J, Pool V L, Gold-Parker A, Cheacharoen R, Stone K H, Hoke E T, Toney M F, McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [74]

    Dong Q, Yuan Y B, Shao Y C, Fang Y J, Wang Q, Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [75]

    Lee B, Hwang T, Lee S, Shin B, Park B 2019 Sci. Rep. 9 4803Google Scholar

    [76]

    Zhang C P, Li Z P, Liu J, Xin Y C, Shao Z P, Cui G, Pang S P 2018 ACS Energy Lett. 3 1801Google Scholar

    [77]

    Ma T, Wang S W, Zhang Y W, Zhang K X, Yi L X 2020 J. Mater. Sci. 55 464Google Scholar

    [78]

    Tong G, Ono L K, Qi Y B 2019 Energy Technol. 8 1900961Google Scholar

    [79]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [80]

    Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699Google Scholar

    [81]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [82]

    Mahesh S, Ball J M, Oliver R D J, McMeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [83]

    Levine I, Vera O G, Kulbak M, Ceratti D-R, Rehermann C, Márquez J A, Levcenko S, Unold T, Hodes G, Balberg I, Cahen D, Dittrich T 2019 ACS Energy Lett. 4 1150Google Scholar

    [84]

    Song Z, Chen C, Li C, Awni R A, Zhao D, Yan Y 2019 Semicond. Sci. Technol. 34 093001Google Scholar

    [85]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [86]

    Slotcavage D J, Karunadasa H I, McGehee M D 2016 ACS Energy Lett. 1 1199Google Scholar

    [87]

    Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar

    [88]

    Beal R E, Hagström N Z, Barrier J, Gold-Parker A, Prasanna R, Bush K A, Passarello D, Schelhas L T, Brüning K, Tassone C J, Steinrück H G, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [89]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [90]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204Google Scholar

    [91]

    Liu S, Guan Y J, Sheng Y S, Hu Y, Rong Y G, Mei A Y, Han H W 2020 Adv. Energy Mater. 10 1902492Google Scholar

    [92]

    Gao F, Zhao Y, Zhang X W, You J B 2020 Adv. Energy Mater. 10 1902650Google Scholar

    [93]

    Han J H, Luo S P, Yin X W, Zhou Y, Nan H, Li J B, Li X, Oron D, Shen H P, Lin H 2018 Small 14 1801016Google Scholar

    [94]

    Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [95]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 16142Google Scholar

    [96]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [97]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [98]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 12 4712Google Scholar

    [99]

    Kubicki D, Prochowicz D, Hofstetter A, Saski M, Yadav P, Bi D, Pellet N, Lewiński J, Zakeeruddin S M, Grätzel M 2018 J. Mater. Chem. A 140 3345Google Scholar

    [100]

    Jodlowski A D, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin M K 2017 Nat. Energy 2 972Google Scholar

    [101]

    Chen H, Wei Q, Saidaminov M I, Wang F, Johnston A, Hou Y, Peng Z J, Xu K M, Zhou W J, Liu Z H, Qiao L, Wang X, Xu S W, Li J Y, Long R, Ke Y Q, Sargent E H, Ning Z J 2019 Adv. Mater. 31 e1903559Google Scholar

    [102]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [103]

    Yu H, Wang F, Xie F Y, Li W W, Chen J, Zhao N 2014 Adv. Funct. Mater. 24 7102Google Scholar

    [104]

    Chae J S, Dong Q F, Huang J S, Centrone A 2015 Nano Lett. 15 8114Google Scholar

    [105]

    Gao C, Liu J, Liao C, Ye Q Y, Zhang Y Z, He X L, Guo X W, Mei J, Lau W 2015 RSC Adv. 5 26175Google Scholar

    [106]

    Xie Y L, Yu H Y, Duan J S, Xu L, Hu B 2020 ACS Appl. Mater. Interfaces 12 11190Google Scholar

    [107]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [108]

    Heo D Y, Lee T H, Iwan A, Kavan L, Omatova M, Majkova E, Kamarás K, Jang H W, Kim S Y 2020 J. Power Sources 458 228067Google Scholar

    [109]

    Tong J H, Song Z N, Kim D H, et al. 2019 Science 364 475Google Scholar

    [110]

    Tang G, Yang C, Stroppa A, Fang D N, Hong J W 2017 J. Chem. Phys. 146 224702Google Scholar

    [111]

    Ke W J, Xiao C X, Wang C L, et al. 2016 Adv. Mater. 28 5214Google Scholar

    [112]

    Xu J X, Buin A, Ip A H, et al. 2015 Nat. Commun. 6 7081Google Scholar

    [113]

    Liang P W, Chueh C C, Williams S T, Jen A K Y 2015 Adv. Energy Mater. 5 1402321Google Scholar

    [114]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [115]

    Fang Y J, Bi C, Wang D, Huang J S 2017 ACS Energy Lett. 2 782Google Scholar

    [116]

    Cui C H, Li Y W, Li Y F 2017 Adv. Energy Mater. 7 1601251Google Scholar

    [117]

    Lee J W, Park N G 2019 Adv. Energy Mater. 10 1903249Google Scholar

    [118]

    Lee J W, Kim H S, Park N G 2016 Acc. Chem. Res. 49 311Google Scholar

    [119]

    Xue D J, Hou Y, Liu S C, Wei M, Chen B, Huang Z, Li Z, Sun B, Proppe A H, Dong Y, Saidaminov M I, Kelley S O, Hu J S, Sargent E H 2020 Nat. Commun. 11 1514Google Scholar

    [120]

    Jan S, Robby P, Rolf B 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [121]

    Luo D Y, Yang W Q, Wang Z P, et al. 2018 Science 360 1442Google Scholar

    [122]

    Bu X N, Westbrook R J E, Lanzetta L, Ding D, Chotchuangchutchaval T, Aristidou N, Haque S A 2019 Sol. RRL 3 1800282Google Scholar

    [123]

    Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S 2017 Joule 1 371Google Scholar

    [124]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [125]

    Elgamel H E, Barnett A M, Rohatgi A, Chen Z, Vinckier C, Nijs J, Mertens R 1995 J. Appl. Phys. 78 3457Google Scholar

    [126]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [127]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [128]

    Bian H, Bai D L, Jin Z W, Wang K, Liang L, Wang H R, Zhang J R, Wang Q, Liu S Z F 2018 Joule 2 1500Google Scholar

    [129]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [130]

    Zhao D W, Ding L M 2020 Sci. Bull. 65 1144Google Scholar

    [131]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [132]

    Shen H P, Omelchenko S T, Jacobs D A, et al. 2018 Sci. Adv. 4 eaau9711Google Scholar

    [133]

    Hou F H, Yan L L, Shi B, et al. 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [134]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [135]

    Sahli F, Kamino B A, Werner J, et al. 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [136]

    Fan R D, Z N, Zhang L, Yang R, Meng Y, Li L W, Guo T, Chen Y H, Xu Z Q, Zheng G H J, Huang Y, Li L, Qin L, Qiu X H, Chen Q, Zhou H P 2017 Sol. RRL 1 1700149Google Scholar

    [137]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [138]

    Zhu S J, Y X, Ren Q S, et al. 2018 Nano Energy 45 280Google Scholar

    [139]

    Zhu S J, Hou F H, Huang W, et al. 2018 Sol. RRL 2 1800176Google Scholar

    [140]

    Hou F H, Han C, Isabella O, et al. 2019 Nano Energy 56 234Google Scholar

    [141]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [142]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H-P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [143]

    Marko Jošt, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B, Albrecht S 2018 Energy Environ. Sci. 11 3511Google Scholar

    [144]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [145]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [146]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [147]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [148]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [149]

    Li Z, Xiao C X, Yang Y, et al. 2017 Energy Environ. Sci. 10 1234Google Scholar

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [3] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 物理学报, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [5] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [6] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [7] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [8] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [9] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [12] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [13] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [14] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [15] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [16] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [17] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [18] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 物理学报, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  29017
  • PDF下载量:  1259
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-26
  • 上网日期:  2020-10-15
  • 刊出日期:  2020-10-20

/

返回文章
返回