搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于发卡式开口谐振环的柔性双频带超材料

刘海文 朱爽爽 文品 覃凤 任宝平 肖湘 侯新宇

引用本文:
Citation:

基于发卡式开口谐振环的柔性双频带超材料

刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇

A flexible dual-band metamaterial based on hairpin split-ring resonators

Liu Hai-Wen, Zhu Shuang-Shuang, Wen Pin, Qin Feng, Ren Bao-Ping, Xiao Xiang, Hou Xin-Yu
PDF
导出引用
  • 本文设计了一种基于开口谐振环(split ring resonator, SRR)混合排列单元格的小型化双频带超材料(metamaterial, MM). 该MM的单元结构为发卡式SRR, 所设计的双频带MM可以应用于无线局域网(2.4 GHz) 和全球微波互联接入(3.5GHz)系统. 并且, 采用柔性介质作为基板增加了MM的柔韧度和普适性, 实验和测试结果表明: 双频带MM的中心频率可以通过调节SRR的尺寸进行控制. 此外, 本文也对MM在不同入射角的情况进行了分析, 结果表明MM对入射角度不敏感.最后, 通过MM的表面电流分布情况研究, 进一步解释了其双频带谐振频率的产生原理.
    A miniaturization dual-band metamaterial (MM) model with a unit cell of hybrid-aligned hairpin split ring resonator (SRR) is proposed in this letter. The unit cell of this MM structure is a hairpin SRR, and the proposed dual-band MM is designed for security applications of wireless local-area networks (WLAN) at 2.4 GHz and worldwide interoperability for microwave access (WiMAX) at 3.5 GHz. Furthermore, a flexible substrate is adopted to improve the flexibility and practicability of the MM. Both simulated and measured results show that the center frequencies of the dual-band MM can be allocated by properly choosing the dimension parameters of the SRR. In addition, the MM are simulated at different angles of incidence, and the results reveal that the MM can operate quite well over a range of angles of incidence. Finlly, the current distribution in the MM has also been investigated to explain the mechanism of the dual-band resonance prodnced.
    • 基金项目: 国家自然科学基金(批准号: 61461020和U1431110)和江西省国际合作基金(批准号: 20133BDH80007和 20132BDH80013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China, (Grant Nos. 61461020, U1431110), and the International Cooperation Funds and Science and Technology Innovation Team of Jiangxi Province of China (Grant Nos. 20133BDH80007, 20132BDH80013).
    [1]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [3]

    Zhou J, Koschny T, Kafesaki M, Economou E N, Pendry J B, Soukoulis C M 2005 Phys. Rev. Lett. 95 223902

    [4]

    Azad A K, Taylor A J, Smirnova E, O'Hara J F 2008 Appl. Phys. Lett. 92 011119

    [5]

    Li Z F, Zhao R K, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [6]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microwave Opt Technol Lett. 55 1606

    [7]

    Ma X L, Huang C, Pu M B, Wang Y Q, Zhao Z Y, Wang C T, Luo X G 2012 Appl. Phys. Lett. 101 161901

    [8]

    Li B, He L X, Yin Y Z, Guo W Y, Sun X W 2013 Microwave Opt Technol Lett. 55 988

    [9]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 167307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 167307]

    [10]

    Gao J S Wang S S Feng X G Xu N X Zhao J L Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [11]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]

    [13]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101

    [14]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [15]

    Li M H, Yang H L, Hou X W 2010 Progress In Electromagnetics Research 108 37

    [16]

    Ekmekci E, Turhan-Sayan G 2010 Electron. Lett. 46 324

    [17]

    Romeu J, Rahmat-Samii Y 2000 IEEE Trans. Antennas Propag. 48 1097

    [18]

    da Silva P H F, dos Santos A F, Cruz R M S, D'Assuncao A G 2012 Microwave Opt Technol Lett. 54 771

    [19]

    Ragi P M, Umadevi K S, Nees P, Jose J, Keerthy M V, Joseph V P 2012 Microwave Opt Technol Lett. 54 1415

    [20]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [21]

    Smith D R 2006 J. Appl. Phys. 100 024507

    [22]

    Gao Q, Yan D B, Yuan N C, Fu Y Q 2007 Journal of Electronics & Information Technology 29 506 (in Chinese) [高强, 闫敦豹, 袁乃昌, 付云起 2007 电子与信息学报 29 506]

  • [1]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [3]

    Zhou J, Koschny T, Kafesaki M, Economou E N, Pendry J B, Soukoulis C M 2005 Phys. Rev. Lett. 95 223902

    [4]

    Azad A K, Taylor A J, Smirnova E, O'Hara J F 2008 Appl. Phys. Lett. 92 011119

    [5]

    Li Z F, Zhao R K, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [6]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microwave Opt Technol Lett. 55 1606

    [7]

    Ma X L, Huang C, Pu M B, Wang Y Q, Zhao Z Y, Wang C T, Luo X G 2012 Appl. Phys. Lett. 101 161901

    [8]

    Li B, He L X, Yin Y Z, Guo W Y, Sun X W 2013 Microwave Opt Technol Lett. 55 988

    [9]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 167307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 167307]

    [10]

    Gao J S Wang S S Feng X G Xu N X Zhao J L Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [11]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]

    [13]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101

    [14]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [15]

    Li M H, Yang H L, Hou X W 2010 Progress In Electromagnetics Research 108 37

    [16]

    Ekmekci E, Turhan-Sayan G 2010 Electron. Lett. 46 324

    [17]

    Romeu J, Rahmat-Samii Y 2000 IEEE Trans. Antennas Propag. 48 1097

    [18]

    da Silva P H F, dos Santos A F, Cruz R M S, D'Assuncao A G 2012 Microwave Opt Technol Lett. 54 771

    [19]

    Ragi P M, Umadevi K S, Nees P, Jose J, Keerthy M V, Joseph V P 2012 Microwave Opt Technol Lett. 54 1415

    [20]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [21]

    Smith D R 2006 J. Appl. Phys. 100 024507

    [22]

    Gao Q, Yan D B, Yuan N C, Fu Y Q 2007 Journal of Electronics & Information Technology 29 506 (in Chinese) [高强, 闫敦豹, 袁乃昌, 付云起 2007 电子与信息学报 29 506]

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [7] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [8] 马明宇, 吴晗, 陈卓. 金属开口环谐振器超构分子中二次谐波偏振态的调控. 物理学报, 2019, 68(21): 214205. doi: 10.7498/aps.68.20190837
    [9] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [10] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [11] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [12] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究. 物理学报, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [13] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [14] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [15] 杨怀, 王春华, 郭小蓉. 基于正六边形多开口的新型双频带左手材料. 物理学报, 2014, 63(1): 014103. doi: 10.7498/aps.63.014103
    [16] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] 陈春晖, 屈绍波, 王甲富, 马华, 徐卓, 何花. 连通的开口和闭口谐振环构成的磁超材料设计. 物理学报, 2011, 60(8): 084104. doi: 10.7498/aps.60.084104
    [19] 唐明春, 肖绍球, 邓天伟, 王多, 柏艳英, 金大鹏, 王秉中. 一种新颖的变异开口谐振环双频带磁谐振特异材料. 物理学报, 2011, 60(6): 064101. doi: 10.7498/aps.60.064101
    [20] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 顾超. 基于双环开口谐振环对的平面周期结构左手超材料. 物理学报, 2009, 58(5): 3224-3229. doi: 10.7498/aps.58.3224
计量
  • 文章访问数:  7628
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-09-14
  • 刊出日期:  2015-02-05

/

返回文章
返回