-
本文设计了一种基于开口谐振环(split ring resonator, SRR)混合排列单元格的小型化双频带超材料(metamaterial, MM). 该MM的单元结构为发卡式SRR, 所设计的双频带MM可以应用于无线局域网(2.4 GHz) 和全球微波互联接入(3.5GHz)系统. 并且, 采用柔性介质作为基板增加了MM的柔韧度和普适性, 实验和测试结果表明: 双频带MM的中心频率可以通过调节SRR的尺寸进行控制. 此外, 本文也对MM在不同入射角的情况进行了分析, 结果表明MM对入射角度不敏感.最后, 通过MM的表面电流分布情况研究, 进一步解释了其双频带谐振频率的产生原理.
-
关键词:
- 超材料(MM) /
- 双频带 /
- 柔性 /
- 开口谐振环(SRR)
A miniaturization dual-band metamaterial (MM) model with a unit cell of hybrid-aligned hairpin split ring resonator (SRR) is proposed in this letter. The unit cell of this MM structure is a hairpin SRR, and the proposed dual-band MM is designed for security applications of wireless local-area networks (WLAN) at 2.4 GHz and worldwide interoperability for microwave access (WiMAX) at 3.5 GHz. Furthermore, a flexible substrate is adopted to improve the flexibility and practicability of the MM. Both simulated and measured results show that the center frequencies of the dual-band MM can be allocated by properly choosing the dimension parameters of the SRR. In addition, the MM are simulated at different angles of incidence, and the results reveal that the MM can operate quite well over a range of angles of incidence. Finlly, the current distribution in the MM has also been investigated to explain the mechanism of the dual-band resonance prodnced.-
Keywords:
- Metamaterial (MM) /
- dual-band /
- flexible /
- split ring resonator (SRR)
[1] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[3] Zhou J, Koschny T, Kafesaki M, Economou E N, Pendry J B, Soukoulis C M 2005 Phys. Rev. Lett. 95 223902
[4] Azad A K, Taylor A J, Smirnova E, O'Hara J F 2008 Appl. Phys. Lett. 92 011119
[5] Li Z F, Zhao R K, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901
[6] Zhai H Q, Li Z H, Li L, Liang C H 2013 Microwave Opt Technol Lett. 55 1606
[7] Ma X L, Huang C, Pu M B, Wang Y Q, Zhao Z Y, Wang C T, Luo X G 2012 Appl. Phys. Lett. 101 161901
[8] Li B, He L X, Yin Y Z, Guo W Y, Sun X W 2013 Microwave Opt Technol Lett. 55 988
[9] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 167307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 167307]
[10] Gao J S Wang S S Feng X G Xu N X Zhao J L Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]
[11] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[12] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]
[13] Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101
[14] Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303
[15] Li M H, Yang H L, Hou X W 2010 Progress In Electromagnetics Research 108 37
[16] Ekmekci E, Turhan-Sayan G 2010 Electron. Lett. 46 324
[17] Romeu J, Rahmat-Samii Y 2000 IEEE Trans. Antennas Propag. 48 1097
[18] da Silva P H F, dos Santos A F, Cruz R M S, D'Assuncao A G 2012 Microwave Opt Technol Lett. 54 771
[19] Ragi P M, Umadevi K S, Nees P, Jose J, Keerthy M V, Joseph V P 2012 Microwave Opt Technol Lett. 54 1415
[20] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103
[21] Smith D R 2006 J. Appl. Phys. 100 024507
[22] Gao Q, Yan D B, Yuan N C, Fu Y Q 2007 Journal of Electronics & Information Technology 29 506 (in Chinese) [高强, 闫敦豹, 袁乃昌, 付云起 2007 电子与信息学报 29 506]
-
[1] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[3] Zhou J, Koschny T, Kafesaki M, Economou E N, Pendry J B, Soukoulis C M 2005 Phys. Rev. Lett. 95 223902
[4] Azad A K, Taylor A J, Smirnova E, O'Hara J F 2008 Appl. Phys. Lett. 92 011119
[5] Li Z F, Zhao R K, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901
[6] Zhai H Q, Li Z H, Li L, Liang C H 2013 Microwave Opt Technol Lett. 55 1606
[7] Ma X L, Huang C, Pu M B, Wang Y Q, Zhao Z Y, Wang C T, Luo X G 2012 Appl. Phys. Lett. 101 161901
[8] Li B, He L X, Yin Y Z, Guo W Y, Sun X W 2013 Microwave Opt Technol Lett. 55 988
[9] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 167307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 167307]
[10] Gao J S Wang S S Feng X G Xu N X Zhao J L Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]
[11] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[12] Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 237302]
[13] Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101
[14] Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303
[15] Li M H, Yang H L, Hou X W 2010 Progress In Electromagnetics Research 108 37
[16] Ekmekci E, Turhan-Sayan G 2010 Electron. Lett. 46 324
[17] Romeu J, Rahmat-Samii Y 2000 IEEE Trans. Antennas Propag. 48 1097
[18] da Silva P H F, dos Santos A F, Cruz R M S, D'Assuncao A G 2012 Microwave Opt Technol Lett. 54 771
[19] Ragi P M, Umadevi K S, Nees P, Jose J, Keerthy M V, Joseph V P 2012 Microwave Opt Technol Lett. 54 1415
[20] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103
[21] Smith D R 2006 J. Appl. Phys. 100 024507
[22] Gao Q, Yan D B, Yuan N C, Fu Y Q 2007 Journal of Electronics & Information Technology 29 506 (in Chinese) [高强, 闫敦豹, 袁乃昌, 付云起 2007 电子与信息学报 29 506]
计量
- 文章访问数: 7628
- PDF下载量: 706
- 被引次数: 0