搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究

王长 曹俊诚

引用本文:
Citation:

太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究

王长, 曹俊诚

Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field

Wang Chang, Cao Jun-Cheng
PDF
导出引用
  • 微带超晶格在磁场和太赫兹场调控下表现出丰富而复杂的动力学行为, 研究微带电子在外场作用下的输运性质对于太赫兹器件设计与研制具有重要意义. 本文采用准经典的运动方程描述了超晶格微带电子在沿超晶格生长方向(z方向)的THz场和相对于z轴倾斜的磁场共同作用下的非线性动力学特性. 研究表明, 在太赫兹场和倾斜磁场共同作用下, 超晶格微带电子随时间的演化表现出周期和混沌等新奇的运动状态. 采用庞加莱分支图详细研究了微带电子在磁场和太赫兹场调控下的运动规律, 给出了电子运行于周期和混沌运动状态的参数区间. 在电场和磁场作用下, 微带电子将产生布洛赫振荡和回旋振荡, 形成复杂的协同耦合振荡. 太赫兹场与这些协同振荡模式之间的相互作用是导致电子表现出周期态、混沌态以及倍周期分叉等现象的主要原因.
    Vertical electron transport in semiconductor superlattice has been the focus of science and technology during the past two decades due to the potential application of superlattice in terahertz devices. When driven by electromagnetic field, many novel phenomena have been found in superlattice. Here we study the chaotic electron transport in miniband superlattice driven by dc+ac electric fields along the growth axis (z-axis) and a magnetic field tilted to z-axis using semiclassical equations of motion in the preflence of dissipation. We calculate the electron momentum by changing the magnetic field or amplitude of the terahertz field. It is shown that the momentum py(t) of miniband electron exhibits complicated oscillation modes while changing the control parameters. Poincaré bifurcation diagram and power spectrum are adopted to analyze the nonlinear electron states. Poincaré bifurcation diagram is obtained by plotting pym = py(mTac) (with m = 1, 2, 3,… and Tac the period of ac terahertz field) as functions of ac amplitude E1 after the transients decay. The periodic and aperiodic regions can be distinguished from each other since there are a large number of points in the chaotic regions. When the magnetic field is increased from 1.5 to 2 T, the Poincaré bifurcation diagram changes dramatically due to the strong effect of magnetic field on electron motion. The oscillating state of py(t) may be changed between periodic and chaotic syates. Power spectra of electron momentum py for different values of E1 (= 2.06, 2.18, 2.388, and 2.72) are calculated for a deep insight into the nonlinear oscillating mode. It is found that the power spectra of n-periodic states show peaks at frequencies ifac/n (with i = 1, 2, 3,…); the power spectra of chaotic states are very irregular with a large number of peaks. We demonstrate that the dissipation and resonance between Bloch oscillation frequency and cyclotron frequency play an important role in the electron transport process. We attribute the emerging of periodic and chaotic states in a superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode related to Bloch oscillation and cyclotron oscillation. In the case of ωB≠iωc, the time-dependent electron motion is chaotic in most regions of the parameter space. Results of the preflent paper are useful for designing terahertz devices based on the semiconductor superlattices.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339803)、国家高科技研究发展计划(批准号: 2011AA010205)、国家自然科学基金(批准号: 61204135, 61131006, 61321492)、国家重大科学仪器设备开发专项(批准号: 2011YQ150021)、02国家科技重大专项(批准号: 2011ZX02707)、中科院创新团队国际合作伙伴计划和上海市科学技术委员会(批准号: 14530711300)资助的课题.
    • Funds: Project supported by the 973 Program of China (Grant No. 2014CB339803), the 863 Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61204135, 61131006, 61321492), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
    [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 物理学报 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 物理学报 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

  • [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 物理学报 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 物理学报 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

计量
  • 文章访问数:  5383
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-18
  • 修回日期:  2014-12-10
  • 刊出日期:  2015-05-05

/

返回文章
返回