搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K2NiF4型Sr2CrO4的磁电性质研究

曹立朋 望贤成 刘清青 潘礼庆 顾长志 靳常青

引用本文:
Citation:

K2NiF4型Sr2CrO4的磁电性质研究

曹立朋, 望贤成, 刘清青, 潘礼庆, 顾长志, 靳常青

Magnetic and electrical properties of K2NiF4-type Sr2CrO4

Cao Li-Peng, Wang Xian-Cheng, Liu Qing-Qing, Pan Li-Qing, Gu Chang-Zhi, Jin Chang-Qing
PDF
导出引用
  • 以SrO和CrO2为原料, 在高温高压的条件下直接反应生成纯相的K2NiF4结构的Sr2CrO4多晶样品. 结构用粉末X射线衍射及GSAS精修表征. 磁化率测试显示样品存在一个弱的反铁磁相变, 奈尔温度为TN=95 K. 在奈尔温度以上, 磁化率随温度的变化遵循居里-外斯定律. 对样品进行了电阻测试, 结果显示了样品的绝缘特性.
    Sr2CrO4 with a K2NiF4 structure can be synthesized by different methods under ambient pressure and high pressure, while the properties reported are quite different. In this paper, pure phase Sr2CrO4 with K2NiF4 structure is obtained by one-step solid state reaction under high pressure and high temperature. Powders of SrO and CrO2 are used as the starting materials. The Sr2CrO4 structure at room temperature is determined by powder XRD measurement and GSAS Rietveld refinement. Sr2CrO4 crystal is of tetragonal symmetry with space group I4/mmm and its lattice parameters a = 3.8191 Å and c=12.5046 Å. There are two oxygen sites, apical O1 and equatorial O2. The CrO6 octahedron is slightly elongated along the c-axis, forming a longer bond Cr–O1=1.9180 Å and a shorter bond Cr–O2=1.9096 Å. Temperature dependence of the magnetic susceptibility is measured in the temperature range of 2-300 K under the magnetic field 1 T. A weak antiferromagnetic transition can be seen at TN=95 K. Above TN, the susceptibility obeys Curie-Weiss law. The Curie-Weiss fitting gives the Weiss constant θ =-364 K and the effective magnetic moment μeff=2.9 μB, in good agreement with the theoretical value of localized Cr4+, indicating the localized electronic state. Field dependence of susceptibility has been measured at different temperatures. The magnetic properties here are different from those in the previous reports, and this discrepancy is attributed to the quite different sample synthesis methods. Temperature dependence of electrical resistivity of Sr2CrO4 shows insulating behavior. Activation energy Δ is estimated by the relation ρ ∝ exp(Δ/kBT) at temperature range 150-300 K. In the temperature range 150-200 K and 200-300 K the activation energies are ΔL=0.134 eV and ΔH=0.168 eV, respectively. The insulating behavior is consistent with the previous experiment reports and the theoretical calculation, which is possibly attributed to the suppression of orbital degree of freedom, resulting from the elongation of CrO6 octahedron and the narrow band width induced by the two-dimensional crystal structure.
      通信作者: 靳常青, Jin@iphy.ac.cn
    • 基金项目: 国家自然科学基金重大研究计划项目(批准号: 91122035)资助的课题.
      Corresponding author: Jin Chang-Qing, Jin@iphy.ac.cn
    • Funds: Project by the Major Program of the National Natural Science Foundation of China (Grant No. 91122035).
    [1]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532

    [2]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405

    [3]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506

    [4]

    Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521

    [5]

    Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403

    [6]

    Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131

    [7]

    Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701

    [8]

    Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114

    [9]

    Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408

    [10]

    Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601

    [11]

    Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017

    [12]

    Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001

    [13]

    Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564

    [14]

    Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404

    [15]

    Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538

    [16]

    Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701

    [17]

    Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112

    [18]

    Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402

    [19]

    Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405

    [20]

    Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895

    [21]

    Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204

    [22]

    Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425

    [23]

    Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132

  • [1]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532

    [2]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405

    [3]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506

    [4]

    Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521

    [5]

    Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403

    [6]

    Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131

    [7]

    Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701

    [8]

    Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114

    [9]

    Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408

    [10]

    Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601

    [11]

    Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017

    [12]

    Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001

    [13]

    Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564

    [14]

    Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404

    [15]

    Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538

    [16]

    Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701

    [17]

    Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112

    [18]

    Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402

    [19]

    Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405

    [20]

    Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895

    [21]

    Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204

    [22]

    Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425

    [23]

    Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [6] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [7] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [8] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [10] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [11] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [14] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [15] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [16] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [17] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [18] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [19] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
计量
  • 文章访问数:  4506
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-07-27
  • 刊出日期:  2015-11-05

/

返回文章
返回