搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极化旋转超表面的圆极化天线设计

李文惠 张介秋 屈绍波 沈杨 余积宝 范亚 张安学

引用本文:
Citation:

基于极化旋转超表面的圆极化天线设计

李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学

A circular polarization antenna designed based on the polarization conversion metasurface

Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Shen Yang, Yu Ji-Bao, Fan Ya, Zhang An-Xue
PDF
导出引用
  • 本文通过设计出一种反射型极化旋转超表面, 在8-12 GHz频域内实现高效的极化旋转, 并将其加载于微带缝隙天线下方构成新型的极化旋转超表面天线, 利用超表面的90极化旋转效应, 成功实现了天线的圆极化辐射调制. 仿真与实验结果表明: 圆极化天线的中心工作频率为f = 9.1 GHz, 阻抗带宽为8.3-10 GHz. 当微带缝隙天线与极化旋转超表面的间距H=4.5 mm时, 天线在8.3-8.8 GHz频带内实现了圆极化辐射; 当H=20 mm时, 天线在8.8-9.3 GHz频带内实现了圆极化辐射; 当H=8 mm时, 天线在9.3-10 GHz频带内实现了圆极化辐射. 实验结果与仿真结果相符, 证明了此种设计方法的有效性, 也为微带缝隙天线的圆极化设计提供了一种新的途径.
    A novel circular porlarization (CP) antenna is designed and fabricated by loading a kind of polarization conversion metasurface. The structure of polarization conversion metasurface is composed of metal slash and copper ground sheet, which is separated by an FR4 dielectric substrates with a thickness h=3 mm. When a normal electromagnetic wave incident on the whole surface vertically, the electric field of the wave can be decomposed into two components Evi and Evi. Under the excitation of the two components, resonance is induced between the metal slash and the copper ground sheet respectively, making their own reflection phase changed to = u - v = 180, eventually making the reflection wave appear with 90 polarization rotation. By taking the peculiarity of 90polarization rotation of the polarization conversion metasurface, we can modulate the linear polarization of microstrip slot antenna into the circular polarization radiation. Through adjusting the distance between the slot antenna and the polarization rotation metasurface, we can regulate the working frequency of the circular polarization. Simulated and experimental results show that the polarization conversion metasurface makes a high-efficiency polarization rotation at 8-12 GHz. And the center working frequency of the CP antenna is 9.1 GHz, the impedance bandwidth is 8.3-10 GHz. When the distance H = 4.5 mm between the microstrip slot antenna and the polarization conversion metasurface, the 3 dB axial ratio bandwidth is 8.3-8.8 GHz, the microstrip slot antenna may realize circular polarized radiation. When H = 20 mm, the 3 dB axial ratio bandwidth is 8.8-9.3 GHz, and the slot antenna can realize circular polarized radiation. When H = 8 mm, the 3 dB axial ratio bandwidth is 9.3-10 GHz, the slot antenna can realize circular polarized radiation. Experimental results are in agreement with the simulation results, showing the validity of this design method which may become a new approach for the CP antennain designing
      通信作者: 张介秋, zhangjieq0@163.com
    • 基金项目: 国家自然科学基金(批准号: 61471388, 61331005, 11204378, 11274389)、中国博士后科学基金 (批准号: 2013M532131, 2013M532221)、航空科学基金(批准号: 20123196015, 20132796018)和陕西省基础研究计划 (批准号: 2013JM6005)资助的课题.
      Corresponding author: Zhang Jie-Qiu, zhangjieq0@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471388, 61331005, 11204378, 11274389), the China Postdoctoral Science Foundation (Grant Nos. 2013M532131, 2013M532221), the Aviation Science Foundation of China (Grant Nos. 20132796018, 20123196015), and the Fundamental Research Project of Shaanxi Province, China (Grant No. 2013JM6005).
    [1]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Aieta F, Genevet P, Yu N F, Kats A M, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [3]

    Yu N F, Capasso F 2014 Nature Mater. 13 139

    [4]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Chen H Y, Xu Zhuo, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [5]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta.Phys. Sin. 64 158101 (in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [6]

    Manjappa M K, Chiam Sh Y, Cong L Q, Bettiol A, Zhang W L, Singh R J 2015 Appl. Phys. Lett. 106 181101

    [7]

    Forouzmand A, Yakovlev A B 2015 IEEE Trans. Antennas Propag. 64 2191

    [8]

    Wan X, Jiang W X, Ma H F, Cui T J 2014 Appl. Phys. Lett. 104 151601

    [9]

    John S H, Brynan Q, Tanabe Y J, Alexander J Y, Fan S H, Ada S. Y. 2015 Phys. Rev. B 91 125145

    [10]

    Zhu H L, Liu X H, Cheung S W, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 80

    [11]

    Chamok N, Anthony T K, Weiss S J, Ali M 2015 IEEE Antennas Propag. Mag. 57 167

    [12]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [13]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [14]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [15]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [16]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Chen H Y, Xu Zhuo, Zhang A X 2014 J. Appl. Phys. 115 234506

    [17]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Zheng L, Zhou H, Xu Zhuo, Zhang A X 2015 Chin. Phys. B 24 014202

    [18]

    Xue R F, Zhong S S 2002 Chin. J. Radio 17 331 (in Chinese) [薛睿峰, 钟顺时 2002 电波科学学报 17 331]

    [19]

    Zhang J, Liu K C, Zhang X F 1988 The Theory and Engineering of Microstrip Antenna (Beijing: National Denfence Industry Press) p215 (in Chinese) [张钧, 刘克诚, 张贤峄 1988 微带天线理论与工程(北京:国防工业出版社) 第215页]

    [20]

    Chen C, Wu S, Yen T 2008 Appl. Phys. Lett. 93 034110

    [21]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [22]

    Yang F, Rahmat S Y 2003 IEEE Trans. Antennas Propag. 51 2691

  • [1]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Aieta F, Genevet P, Yu N F, Kats A M, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [3]

    Yu N F, Capasso F 2014 Nature Mater. 13 139

    [4]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Chen H Y, Xu Zhuo, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [5]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta.Phys. Sin. 64 158101 (in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [6]

    Manjappa M K, Chiam Sh Y, Cong L Q, Bettiol A, Zhang W L, Singh R J 2015 Appl. Phys. Lett. 106 181101

    [7]

    Forouzmand A, Yakovlev A B 2015 IEEE Trans. Antennas Propag. 64 2191

    [8]

    Wan X, Jiang W X, Ma H F, Cui T J 2014 Appl. Phys. Lett. 104 151601

    [9]

    John S H, Brynan Q, Tanabe Y J, Alexander J Y, Fan S H, Ada S. Y. 2015 Phys. Rev. B 91 125145

    [10]

    Zhu H L, Liu X H, Cheung S W, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 80

    [11]

    Chamok N, Anthony T K, Weiss S J, Ali M 2015 IEEE Antennas Propag. Mag. 57 167

    [12]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [13]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [14]

    Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [15]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [16]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Chen H Y, Xu Zhuo, Zhang A X 2014 J. Appl. Phys. 115 234506

    [17]

    Li Y F, Zhang J Q, Qu Sh B, Wang J F, Zheng L, Zhou H, Xu Zhuo, Zhang A X 2015 Chin. Phys. B 24 014202

    [18]

    Xue R F, Zhong S S 2002 Chin. J. Radio 17 331 (in Chinese) [薛睿峰, 钟顺时 2002 电波科学学报 17 331]

    [19]

    Zhang J, Liu K C, Zhang X F 1988 The Theory and Engineering of Microstrip Antenna (Beijing: National Denfence Industry Press) p215 (in Chinese) [张钧, 刘克诚, 张贤峄 1988 微带天线理论与工程(北京:国防工业出版社) 第215页]

    [20]

    Chen C, Wu S, Yen T 2008 Appl. Phys. Lett. 93 034110

    [21]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [22]

    Yang F, Rahmat S Y 2003 IEEE Trans. Antennas Propag. 51 2691

  • [1] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [3] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [4] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [5] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [6] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [7] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [8] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [9] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响. 物理学报, 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [10] 高向军, 朱莉, 郭文龙. 高极化纯度的超表面透镜设计与应用. 物理学报, 2017, 66(20): 204102. doi: 10.7498/aps.66.204102
    [11] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [13] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [14] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [15] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [16] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [20] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
计量
  • 文章访问数:  8728
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-17
  • 修回日期:  2015-09-23
  • 刊出日期:  2016-01-20

/

返回文章
返回