-
流注放电作为自然界中闪电传播的预电离机制、高压输变线路间长空间间隙放电的重要初始阶段,在工业领域存在诸多潜在应用,近年来引起人们越来越多的关注.流注放电具有典型的多尺度、非线性的放电特征,实验观测中多呈现出分叉等不规则结构.为了研究其微观结构特性和行为特征,本文采用三维粒子仿真模型(PIC/MCC),着重研究了流注从针型正电极的起始和发展过程.模型采用了可变自适应网格、可变粒子权重以及并行计算等技术,有效地降低了三维粒子仿真的计算时间.通过调节针型电极上的施加电压幅值、改变气体组分及调整电极形状尺寸等,研究了放电参数变化对流注放电的分叉结构、半径等行为的影响.模拟结果表明:随着电压的升高,流注的半径及分叉数目增加;对比不同气体组分(纯氧以及不同比例氮氧混合气体),发现其对流注的分叉数目影响较为显著;针型电极结构直接影响了流注的起始时间和形貌.Streamer, which usually appears at the initial stage of atmospheric pressure air discharge, acts as a precursor of lightning. It also occurs as large discharges (called sprites) in upper atmosphere, far above the thundercloud. The streamer discharge has many potential applications in industry, such as gas or water cleaning, ozone generation, assisted combustion, etc. The streamer discharge is difficult to investigate both experimentally and computationally, because of its non-linear and multi-scale characteristics. Various studies on streamer discharge have been carried out, and some progress has been made. However, some things remain to be further understood, i.e., the law of particles motion and the factors influencing streamer discharge. In this paper, we use a pre-established three-dimensional (3D) particle model (PIC/MCC) to study streamer discharge with a needle-plate electrode in air. To simplify the condition, we only use nitrogen-oxygen mixture to represent dry air, regardless of other components such as CO2, H2O gases, etc. In this model, we take photoionization, attachment and detachment processes into account. The adaptive mesh refinement and adaptive particle weight techniques are used in the code. In order to facilitate the simulation, we artificially put a Gaussian seed right on the top of the needle electrode. We adjust some computational parameters to analyze how the streamer discharge starts and evolves from the needle electrode. Many factors can influence streamer discharge during its evolution, from among which we choose three important parameters:voltage amplitude, gas component, and the radius of curvature of the needle electrode tip, to study the generation and evolution of streamer discharge, and focus on inception cloud, streamer branches, and electric fields. The simulation results show that the radius of inception cloud increases with the increase of voltage amplitude, and the diameter of steamer channel and the number of branches also increase with voltage increasing. We choose 4 kV as a proper simulation voltage for next two parts of simulations. By comparing the results obtained in the cases of different gas components (pure oxygen and different ratios of nitrogen-oxygen mixtures), we discover that the nitrogen-oxygen mixture ratio significantly affects the total number of streamer branches. With 0.1% oxygen, discharge grows irregularly with small protrusions on streamers. In the pure oxygen case, streamer seems to have much more thin branches than in other cases. Needle geometry directly changes the inception cloud of the streamer and its morphology, especially when the tip becomes blunter. In this circumstance, electric field strength around the electrode decreases, and inception cloud can be barely seen. Instead, a single-channel streamer discharge develops right toward the plate electrode, later this single-channel streamer splits into branches.
[1] Nijdam S 2011 Experimental Investigations on the Physics of Streamers (Eindhoven:Technische Universiteit Eindhoven) pp2-4
[2] Nijdam S, van Veldhuizen E, Peter B 2012 Plasma Chemistry Catalysis in Gases Liquids (Germany:WILEY-ICH) pp1-44
[3] Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511
[4] Raether H 1939 Z. Phys. 112 464
[5] Loeb L B, Meek J M 1940 J. Appl. Phys. 11 438
[6] Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D:Appl. Phys. 41 234008
[7] Nijdam S, Moerman J S, Briels T M P, van Veldhuizen E M, Ebert U 2008 Appl. Phys. Lett. 92 101502
[8] Peng Q J 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[彭庆军 2012 博士学位论文 (重庆:重庆大学)]
[9] Kulikovsky A A 1997 J. Phys. D:Appl. Phys. 30 441
[10] Luque A, Ebert U 2014 New J. Phys. 16 013039
[11] Li Y D, Wang R P, Zhang Q G, Zhou Y, Wang H G, Liu C L 2011 IEEE Trans. Plasma Sci. 39 2226
[12] Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417
[13] Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205
[14] Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203
[15] Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200
[16] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]
[17] Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005
[18] Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35
[19] Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318
[20] Nijdam S, van de Wetering F M J H, Blanc R, van Veldhuizen E M, Ebert U 2010 J. Phys. D:Appl. Phys. 43 145204
期刊类型引用(10)
1. 魏振宇,刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素. 物理学报. 2025(04): 197-207 . 百度学术
2. 赵晓宁,赵来军,孟声辉,余诚诚,孙岩洲. 基于PIC-MCC实现空气介质阻挡放电过程的数值模拟. 真空科学与技术学报. 2024(04): 361-368 . 百度学术
3. 律方成,刘晓敏,王权圣,王平,耿江海,丁玉剑,陈雅茜. 正极性操作冲击电压下流注放电路径随机发展特性. 华北电力大学学报(自然科学版). 2023(03): 9-18 . 百度学术
4. 王党树,古东明,栾哲哲,刘树林,仪家安,邓翾. 不同电极结构下微间隙空气放电及击穿机制. 高电压技术. 2022(04): 1597-1606 . 百度学术
5. 王振兴,曹志远,李瑞,陈峰,孙丽琼,耿英三,王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报. 2021(05): 251-259 . 百度学术
6. 王党树,古东明,栾哲哲,刘树林,王新霞. 基于PIC/MCC法爆炸性气体环境下的微尺度放电特性. 高电压技术. 2021(03): 805-815 . 百度学术
7. 张钊棋,宋辉,代杰杰,罗林根,盛戈皞,江秀臣. 大气压下温度对针板空气间隙流注放电影响的仿真研究. 中国电机工程学报. 2021(08): 2929-2939 . 百度学术
8. 朱毅佳,朱武,张佳民. 基于COMSOL的流注头部分叉过程仿真与分析. 计算机应用与软件. 2021(05): 88-92+123 . 百度学术
9. 赵大帅,孙志,孙兴,孙怀得,韩柏. 基于分形理论的微间隙空气放电. 物理学报. 2021(20): 199-211 . 百度学术
10. 涂婧怡,陈赦,汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报. 2019(09): 203-211 . 百度学术
其他类型引用(13)
-
[1] Nijdam S 2011 Experimental Investigations on the Physics of Streamers (Eindhoven:Technische Universiteit Eindhoven) pp2-4
[2] Nijdam S, van Veldhuizen E, Peter B 2012 Plasma Chemistry Catalysis in Gases Liquids (Germany:WILEY-ICH) pp1-44
[3] Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511
[4] Raether H 1939 Z. Phys. 112 464
[5] Loeb L B, Meek J M 1940 J. Appl. Phys. 11 438
[6] Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D:Appl. Phys. 41 234008
[7] Nijdam S, Moerman J S, Briels T M P, van Veldhuizen E M, Ebert U 2008 Appl. Phys. Lett. 92 101502
[8] Peng Q J 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[彭庆军 2012 博士学位论文 (重庆:重庆大学)]
[9] Kulikovsky A A 1997 J. Phys. D:Appl. Phys. 30 441
[10] Luque A, Ebert U 2014 New J. Phys. 16 013039
[11] Li Y D, Wang R P, Zhang Q G, Zhou Y, Wang H G, Liu C L 2011 IEEE Trans. Plasma Sci. 39 2226
[12] Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417
[13] Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205
[14] Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203
[15] Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200
[16] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]
[17] Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005
[18] Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35
[19] Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318
[20] Nijdam S, van de Wetering F M J H, Blanc R, van Veldhuizen E M, Ebert U 2010 J. Phys. D:Appl. Phys. 43 145204
期刊类型引用(10)
1. 魏振宇,刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素. 物理学报. 2025(04): 197-207 . 百度学术
2. 赵晓宁,赵来军,孟声辉,余诚诚,孙岩洲. 基于PIC-MCC实现空气介质阻挡放电过程的数值模拟. 真空科学与技术学报. 2024(04): 361-368 . 百度学术
3. 律方成,刘晓敏,王权圣,王平,耿江海,丁玉剑,陈雅茜. 正极性操作冲击电压下流注放电路径随机发展特性. 华北电力大学学报(自然科学版). 2023(03): 9-18 . 百度学术
4. 王党树,古东明,栾哲哲,刘树林,仪家安,邓翾. 不同电极结构下微间隙空气放电及击穿机制. 高电压技术. 2022(04): 1597-1606 . 百度学术
5. 王振兴,曹志远,李瑞,陈峰,孙丽琼,耿英三,王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报. 2021(05): 251-259 . 百度学术
6. 王党树,古东明,栾哲哲,刘树林,王新霞. 基于PIC/MCC法爆炸性气体环境下的微尺度放电特性. 高电压技术. 2021(03): 805-815 . 百度学术
7. 张钊棋,宋辉,代杰杰,罗林根,盛戈皞,江秀臣. 大气压下温度对针板空气间隙流注放电影响的仿真研究. 中国电机工程学报. 2021(08): 2929-2939 . 百度学术
8. 朱毅佳,朱武,张佳民. 基于COMSOL的流注头部分叉过程仿真与分析. 计算机应用与软件. 2021(05): 88-92+123 . 百度学术
9. 赵大帅,孙志,孙兴,孙怀得,韩柏. 基于分形理论的微间隙空气放电. 物理学报. 2021(20): 199-211 . 百度学术
10. 涂婧怡,陈赦,汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报. 2019(09): 203-211 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 8406
- PDF下载量: 432
- 被引次数: 23