搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器

郑加金 王雅如 余柯涵 徐翔星 盛雪曦 胡二涛 韦玮

引用本文:
Citation:

基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器

郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮

Field effect transistor photodetector based on graphene and perovskite quantum dots

Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei
PDF
导出引用
  • 以等离子增强化学气相沉积法制备的石墨烯作为导电沟道材料,将其与无机CsPbI3钙钛矿量子点结合,设计并制备了石墨烯-钙钛矿量子点场效应晶体管光电探测器.研究和分析了石墨烯作为场效应晶体管的电学特性及其与钙钛矿量子点结合作为光电探测器的光电特性.结果表明,石墨烯在场效应晶体管中表现出良好的电学性质,其与钙钛矿量子点的结合对波长为400 nm的光辐射具有明显的光响应,在光强为12 W时器件光生电流最大为64 A,响应率达6.4 AW-1,对应的光电导增益和探测率分别为3.7104,6107 Jones(1 Jones=1 cmHz1/2W-1).
    Graphene is an attractive optoelectronic material for various optoelectronic devices, especially in the field of photoelectric detection due to its high carrier mobility and fast response time. However, the relatively low light absorption cross-section and fast electron-hole recombination rate can lead to rapid exciton annihilation and small light gain, which restrict the commercial applications of pure graphene-based photodetector. The perovskite has attracted much attention because of its high photoelectric conversion efficiency in the field of solar cells. The perovskite has the advantages of long carrier diffusion distance and high optical absorption coefficient, which can effectively make up for the shortcomings of pure graphene-based field-effect transistor. In this work, a field-effect transistor photodetector is demonstrated with the combination of graphene and halide perovskite quantum dots (CsPbI3) serving as conductive channel materials. The graphene is prepared by plasma enhanced chemical vapor deposition, and the quantum dots are CsPbI3 perovskite. The electrical properties of graphene and pure graphene-based field-effect transistor are detected and analyzed by using the Raman spectrum. The results show that the graphene has good intrinsic electrical properties. Unlike previous report in which bulk perovskite was used, the perovskite quantum dot field-effect transistor photodetector has an obvious light response to 400 nm signal light, and shows the excellent photoelectrical performance. Under the illumination of 400 nm light, the signal light could be detected steadily and repeatedly by the graphene-perovskite quantum dot photodetector and converted into photocurrent. The photocurrent of the photodetector has a rapid rise, and the maximum value can reach 64 A at a light power of 12 W. The corresponding responsivity is 6.4 AW-1, which is two orders of magnitude higher than that of the general single graphene photodetector (10-2 AW-1), and it is also higher than that of perovskite-based photodetector (0.4 AW-1). In addition, the photoconductive gain and detectivity arrive at 3.7104 and 6107 Jones (1 Jones=1 cmHz1/2W-1), respectively. The results of this study demonstrate that the graphene-perovskite quantum dot photodetector can be a promising candidate for commercial UV light detectors.
      通信作者: 余柯涵, kehanyu@njupt.edu.cn;xuxx@njnu.edu.cn ; 徐翔星, kehanyu@njupt.edu.cn;xuxx@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61504064,51572120)、中国科学院西安光学密机械研究所瞬态光学与光子技术国家重点实验室开放基金(批准号:SKLST201606)、江苏省自然科学基金(批准号:BK20150847)和南京邮电大学国自基金孵化基金(批准号:NY215143)资助的课题.
      Corresponding author: Yu Ke-Han, kehanyu@njupt.edu.cn;xuxx@njnu.edu.cn ; Xu Xiang-Xing, kehanyu@njupt.edu.cn;xuxx@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61504064, 51572120), the Fund of State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences China (Grant No. SKLST201606), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150847), and the Incubation Foundation of the National Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY215143).
    [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 218502(in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 218502]

    [2]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198

    [3]

    Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039

    [4]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [5]

    Xia F, Avouris P, Mueller T, Lin Y 2009 Nat. Nanotechnol. 4 839

    [6]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458

    [7]

    Gan X, Shiue R J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [8]

    Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D, Yang D R 2017 ACS Nano 11 9854

    [9]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H 2014 Sci. Rep. 4 3826

    [10]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463

    [11]

    Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y 2015 Adv. Func. Mater. 24 7373

    [12]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162

    [13]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41

    [14]

    Wang Y S, Zhang Y P, Lu Y, Xu W D, Mu H R, Chen C, Qiao H, Song J C, Li S J, Sun B Q, Chen Y B, Bao Q L 2015 Adv. Opt. Mater. 3 1389

    [15]

    Kwak D H, Lim D H, Ra H S, Ramasamy P, Lee J S 2016 RSC Adv. 6 65252

    [16]

    Sheng X X, Liu Y, Wang Y, Li Y F, Wang X, Wang X P, Dai Z H, Bao J C, Xu X X 2017 Adv. Mater. 29 1700150

    [17]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Solid State Commun. 143 44

    [18]

    Zhang F, Fang X X, Cheng J, Tang F J, Jin Q H, Zhao J L 2013 J. Funct. Mater. 44 344

    [19]

    Gun Oh J, Ki Hong S, Kim C K, Hoon Bong J, Shin J, Choi S Y, Cho B J 2014 Appl. Phys. Lett. 104 666

    [20]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev.Lett. 102 236805

    [21]

    Hu Z, Sinha D P, Ji U L, Liehr M 2014 J. Appl. Phys. 115 666

    [22]

    Nistor R A, Newns D M, Martyna G J 2011 Acs. Nano. 5 3096

    [23]

    Konstantatos G, Badioli M, Gaudreau L, Osmand J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L 2011 Nat. Nanotechnol. 7 363

    [24]

    Sun Z H, Liu Z K, Li J H, Tai G A, Lau S P, Yan F 2012 Adv. Mater. 24 5878

    [25]

    Chang P H, Liu S Y, Lan Y B, Tsai Yi C, You X Q, Li C S, Huang K Y, Chou A S, Cheng T C, Wang J K, Wu C I 2017 Sci. Rep. 7 46281

    [26]

    Spina M, Lehmann M, Nfrdi B, Gal R, Magrez A, Forr L, Horvth E 2015 Small 11 4824

    [27]

    Sutherland B R, Johnston A K, Ip A H, Xu J X, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photon. 2 1117

  • [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 218502(in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 218502]

    [2]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F 2007 Nat. Mater. 6 198

    [3]

    Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y M, Tsang J, Perebeinos V, Avouris P 2009 Nano Lett. 9 1039

    [4]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [5]

    Xia F, Avouris P, Mueller T, Lin Y 2009 Nat. Nanotechnol. 4 839

    [6]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nat. Commun. 2 458

    [7]

    Gan X, Shiue R J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [8]

    Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D, Yang D R 2017 ACS Nano 11 9854

    [9]

    Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H 2014 Sci. Rep. 4 3826

    [10]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463

    [11]

    Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y 2015 Adv. Func. Mater. 24 7373

    [12]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162

    [13]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41

    [14]

    Wang Y S, Zhang Y P, Lu Y, Xu W D, Mu H R, Chen C, Qiao H, Song J C, Li S J, Sun B Q, Chen Y B, Bao Q L 2015 Adv. Opt. Mater. 3 1389

    [15]

    Kwak D H, Lim D H, Ra H S, Ramasamy P, Lee J S 2016 RSC Adv. 6 65252

    [16]

    Sheng X X, Liu Y, Wang Y, Li Y F, Wang X, Wang X P, Dai Z H, Bao J C, Xu X X 2017 Adv. Mater. 29 1700150

    [17]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Solid State Commun. 143 44

    [18]

    Zhang F, Fang X X, Cheng J, Tang F J, Jin Q H, Zhao J L 2013 J. Funct. Mater. 44 344

    [19]

    Gun Oh J, Ki Hong S, Kim C K, Hoon Bong J, Shin J, Choi S Y, Cho B J 2014 Appl. Phys. Lett. 104 666

    [20]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev.Lett. 102 236805

    [21]

    Hu Z, Sinha D P, Ji U L, Liehr M 2014 J. Appl. Phys. 115 666

    [22]

    Nistor R A, Newns D M, Martyna G J 2011 Acs. Nano. 5 3096

    [23]

    Konstantatos G, Badioli M, Gaudreau L, Osmand J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L 2011 Nat. Nanotechnol. 7 363

    [24]

    Sun Z H, Liu Z K, Li J H, Tai G A, Lau S P, Yan F 2012 Adv. Mater. 24 5878

    [25]

    Chang P H, Liu S Y, Lan Y B, Tsai Yi C, You X Q, Li C S, Huang K Y, Chou A S, Cheng T C, Wang J K, Wu C I 2017 Sci. Rep. 7 46281

    [26]

    Spina M, Lehmann M, Nfrdi B, Gal R, Magrez A, Forr L, Horvth E 2015 Small 11 4824

    [27]

    Sutherland B R, Johnston A K, Ip A H, Xu J X, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photon. 2 1117

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [10] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [11] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [12] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [13] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [15] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [16] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [17] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [18] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [19] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  9745
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-03-20
  • 刊出日期:  2018-06-05

/

返回文章
返回