搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ib型金刚石大单晶的限形生长

王君卓 李尚升 宿太超 胡美华 胡强 吴玉敏 王健康 韩飞 于昆鹏 高广进 郭明明 贾晓鹏 马红安 肖宏宇

引用本文:
Citation:

Ib型金刚石大单晶的限形生长

王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇

Shape controlled growth for type Ib large diamond crystals

Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu
PDF
导出引用
  • 金刚石的限形生长有利于其后续加工.对于磨料级金刚石限形生长的研究已经比较透彻,但金刚石大单晶的限形生长尚缺乏全面系统的研究.本文以FeNi (64wt%:36wt%)合金为触媒,利用高温高压下的温度梯度法在5.6 GPa时对不同温度下分别沿(100)面和(111)面生长的Ib型金刚石大单晶的晶形进行了研究.研究表明:随着温度的升高,沿(100)晶面生长的金刚石大单晶的晶形分别为板状、塔状直至尖塔状,而沿(111)面生长的金刚石大单晶的晶形则分别为塔状和板状;分析了不同温度下分别沿(100)面和(111)面生长金刚石大单晶不同晶形高径比的变化情况.利用不同压力和温度下的金刚石大单晶合成实验绘制了沿(100)和(111)面生长金刚石大单晶的晶形在V形生长区域内的分布示意图,表明沿(111)面生长的金刚石大单晶V形区温度下限明显比以(100)面生长的高,而沿这两面生长金刚石大单晶的V形区温度上限差别并不明显.对不同生长面V形区温度上下限的差别进行了解释,据此实现了Ib型金刚石大单晶的限形生长.
    The shape controlled growth of diamond is beneficial to its subsequent processing. The shape controlled growth for abrasive grade diamond, whose particle size is less than 1 mm, has been studied extensively, while the shape controlled growth of large diamond crystals, which have important commercial and scientific applications, has not been investigated in detail. Therefore, it is necessary to do further researches. In this study, we synthesize large type Ib diamond crystals and investigate their growth shapes at pressures of 5.3-5.9 GPa and temperatures of 1200-1370℃, by using Fe64Ni36 alloy as the catalyst and (100) or (111) face of seed as growth face. Experimental results show that for the diamond crystals grown along the (100) face, the crystal shapes presents plate shape at 1206-1215℃, tower shape at 1216-1260℃, and tower steeple shape at 1261-1360℃; in sequence while for those grown along the (111) face, the crystal shape is of tower at 1233-1238℃ and becomes plate at 1239-1364℃. The ratio of height to diameter, which can provide a standard to quantify the shape of a diamond, is used to describe the crystal shape in detail. For large diamond crystals growing along the (100) face, under a high pressure of 5.6 GPa, the ratio of height to diameter increases with temperature increasing but the ratio of height to diameter, when growing along the (111) face, decreases. The shape distributions of large diamond crystals in the V-shaped region can be determined in the experiments of large diamond crystal synthesis at different temperatures (1200-1370℃) and pressures (5.3 GPa, 5.6 GPa, 5.9 GPa). The lower limit temperature of large diamond crystal growing along the (111) face in the V-shape region is obviously higher than that growing along the (100) face, but the difference between the higher limit temperatures for growing along these two faces is not obvious. The difference between the lower temperature limits of large diamond crystals growing along the (100) and (111) face can be explained by the different energies of the crystal surface and diamond/graphite equilibrium line in the phase diagram of carbon/alloy. Therefore, it has been realized that the shapes for type Ib large diamond crystals are controlled.
      通信作者: 李尚升, lishsh@hpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51772120)、河南省科技攻关项目(批准号:172102210283,162102210275)、河南省高校重点科研项目(批准号:18A430017,17A430020)和河南理工大学材料工程专业学位研究生专业实践示范基地(批准号:2016YJD03)资助的课题.
      Corresponding author: Li Shang-Sheng, lishsh@hpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772120), the Project for Key Science and Technology Research of Henan Province, China (Grant Nos. 172102210283, 162102210275), the Key Scientific Research Project in Colleges and Universities of Henan Province, China (Grant Nos. 18A430017, 17A430020), and Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03).
    [1]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [2]

    Chen Y N, Zhang Y, Yu W C, Gong M, Yang F, Liu R, Wang J M, Li L, Jing P, Wang Z G 2017 Micronano Electron. Technol. 54 217 (in Chinese) [陈亚男, 张烨, 郁万成, 龚猛, 杨霏, 刘瑞, 王嘉铭, 李玲, 金鹏, 王占国 2017 微纳电子技术 54 217]

    [3]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [4]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力 2017 物理学报 66 038103]

    [5]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 J. Crystal Growth 178 485

    [6]

    Li Z, Jia P, Li L 2009 Adv. Mater. Res. 76 678

    [7]

    Li Z H, Zhao B 2011 Diamond & Abrasives Engineering 31 1 (in Chinese) [李志宏, 赵博 2011 金刚石与磨料磨具工程 31 1]

    [8]

    Wentorf R H 1971 J. Phys. Chem. 75 1833

    [9]

    Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [10]

    Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10

    [11]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf R H 1959 Nature 184 1094

    [12]

    Bundy F P, Bovenkerk H P, Strong H M, Wentorf R H 1961 J. Chem. Phys. 35 383

    [13]

    Zhang S D, Zhu Y H 1995 Chin. J. High Pressure Phys. 9 34 (in Chinese) [张书达, 朱瑶华 1995 高压物理学报 9 34]

    [14]

    Fu H F, Zhu C M 1980 Geochimica 1 23 (in Chinese) [傅慧芳, 朱成明 1980 地球化学 1 23]

    [15]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond and Related Mater. 14 1916

    [16]

    Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103 (in Chinese) [胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 物理学报 62 188103]

    [17]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [18]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, Jia X P 2016 Chin. Phys. B 25 118104

    [19]

    Sumiya H, Toda N, Satoh S 2002 J. Crystal Growth 237-239 1281

    [20]

    Zhou L, Jia X P, Ma H A, Zhen Y J, Li Y T 2009 Chin. Phys. B 18 333

    [21]

    Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469

  • [1]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [2]

    Chen Y N, Zhang Y, Yu W C, Gong M, Yang F, Liu R, Wang J M, Li L, Jing P, Wang Z G 2017 Micronano Electron. Technol. 54 217 (in Chinese) [陈亚男, 张烨, 郁万成, 龚猛, 杨霏, 刘瑞, 王嘉铭, 李玲, 金鹏, 王占国 2017 微纳电子技术 54 217]

    [3]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [4]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力 2017 物理学报 66 038103]

    [5]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 J. Crystal Growth 178 485

    [6]

    Li Z, Jia P, Li L 2009 Adv. Mater. Res. 76 678

    [7]

    Li Z H, Zhao B 2011 Diamond & Abrasives Engineering 31 1 (in Chinese) [李志宏, 赵博 2011 金刚石与磨料磨具工程 31 1]

    [8]

    Wentorf R H 1971 J. Phys. Chem. 75 1833

    [9]

    Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [10]

    Sumiya H, Toda N, Satoh S 2005 Sei. Tech. Rev. 60 10

    [11]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf R H 1959 Nature 184 1094

    [12]

    Bundy F P, Bovenkerk H P, Strong H M, Wentorf R H 1961 J. Chem. Phys. 35 383

    [13]

    Zhang S D, Zhu Y H 1995 Chin. J. High Pressure Phys. 9 34 (in Chinese) [张书达, 朱瑶华 1995 高压物理学报 9 34]

    [14]

    Fu H F, Zhu C M 1980 Geochimica 1 23 (in Chinese) [傅慧芳, 朱成明 1980 地球化学 1 23]

    [15]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond and Related Mater. 14 1916

    [16]

    Hu M H, Bi N, Li S S, Su T C, Li X L, Hu Q, Jia X P, Ma H A 2013 Acta Phys. Sin. 62 188103 (in Chinese) [胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安 2013 物理学报 62 188103]

    [17]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [18]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A, Jia X P 2016 Chin. Phys. B 25 118104

    [19]

    Sumiya H, Toda N, Satoh S 2002 J. Crystal Growth 237-239 1281

    [20]

    Zhou L, Jia X P, Ma H A, Zhen Y J, Li Y T 2009 Chin. Phys. B 18 333

    [21]

    Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, Huang G F, Ma L Q, Ma H A 2008 Chin. Phys. Lett. 25 1469

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究. 物理学报, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响. 物理学报, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [7] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [8] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响. 物理学报, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [9] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响. 物理学报, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响. 物理学报, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [15] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [16] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [17] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [18] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [19] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  7131
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-26
  • 修回日期:  2018-04-17
  • 刊出日期:  2019-08-20

/

返回文章
返回