搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强 石海泉 余萍 刘志敏

引用本文:
Citation:

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强, 石海泉, 余萍, 刘志敏

Surface-enhanced Raman scattering effect of silver nanoparticles array

Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min
PDF
导出引用
  • 利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1,4-苯二硫醇(1,4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10-13 mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.
    The Raman signal of adsorbed Raman probe molecule can be significantly enhanced by using metallic nanostructures with high-density hot spots as surface enhanced Raman scattering (SERS) substrates. A great effort has been devoted to the improving of the SERS detection sensitivity and reproducibility by preparing ordered metal nanostructure arrays with controlled particle size, shape and hot spot position, which are used as SERS substrates. In this paper, we prepare high-density Ag nanoparticle arrays by electrochemical deposition in anodic aluminum oxide (AAO) templates. The particle size and the nanogap between the adjacent particles can be adjusted by changing the deposition time. The structures and surface plasmons of Ag nanoparticle arrays are characterized by scanning electron microscopy and reflectance spectra. The size of the gap between the particles significantly affects the plasmon resonance and the plasmon coupling between the particles. The SERS properties of Ag nanoparticle arrays are investigated by using 1, 4-benzenedithiol (1, 4-BDT) as Raman probe molecule. The Ag nanoparticle arrays with high SERS detection sensitivity and high reproducibility (uniformity) are prepared by optimizing the deposition time (the nanogap between the adjacent particles), and the detection limit of the 1, 4-BDT can reach 10-13 mol/L. The relative standard deviation of the SERS signal intensity randomly measured from 20 spots on the Ag nanoparticle array substrate is 5.35%. The finite-difference time domain simulations confirm that the plasmon coupling between nanoparticles is strong, and that the coupling between the nanoparticles will increase as the nanogap decreases. Additionally, the local field is enhanced at the bottom of the nanoparticle and the gap between the Ag nanoparticle and the AAO template is larger. These results show that Ag nanoparticle array can be used as a high-efficiency SERS substrate.
      Corresponding author: Cheng Zi-Qiang, zqcheng_opt@126.com;liuzhimin2006@163.com ; Liu Zhi-Min, zqcheng_opt@126.com;liuzhimin2006@163.com
    • Funds: Project supported by the Scientific Project of Jiangxi Education Department of China (Grant No. GJJ160532), the Hundred People Long Voyage Project of Jiangxi Province of China (Grant No. 2017-91), and the Visiting Scholar Project for Young Teachers' Development of Jiangxi General Undergraduate Universities, China (Grant No. 2016-109).
    [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响. 物理学报, 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [2] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法. 物理学报, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [6] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [7] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [8] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [9] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [10] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [14] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [16] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [17] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [18] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
计量
  • 文章访问数:  9135
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-07-13
  • 刊出日期:  2018-10-05

/

返回文章
返回