搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强 石海泉 余萍 刘志敏

引用本文:
Citation:

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强, 石海泉, 余萍, 刘志敏

Surface-enhanced Raman scattering effect of silver nanoparticles array

Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min
PDF
导出引用
  • 利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1,4-苯二硫醇(1,4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10-13 mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.
    The Raman signal of adsorbed Raman probe molecule can be significantly enhanced by using metallic nanostructures with high-density hot spots as surface enhanced Raman scattering (SERS) substrates. A great effort has been devoted to the improving of the SERS detection sensitivity and reproducibility by preparing ordered metal nanostructure arrays with controlled particle size, shape and hot spot position, which are used as SERS substrates. In this paper, we prepare high-density Ag nanoparticle arrays by electrochemical deposition in anodic aluminum oxide (AAO) templates. The particle size and the nanogap between the adjacent particles can be adjusted by changing the deposition time. The structures and surface plasmons of Ag nanoparticle arrays are characterized by scanning electron microscopy and reflectance spectra. The size of the gap between the particles significantly affects the plasmon resonance and the plasmon coupling between the particles. The SERS properties of Ag nanoparticle arrays are investigated by using 1, 4-benzenedithiol (1, 4-BDT) as Raman probe molecule. The Ag nanoparticle arrays with high SERS detection sensitivity and high reproducibility (uniformity) are prepared by optimizing the deposition time (the nanogap between the adjacent particles), and the detection limit of the 1, 4-BDT can reach 10-13 mol/L. The relative standard deviation of the SERS signal intensity randomly measured from 20 spots on the Ag nanoparticle array substrate is 5.35%. The finite-difference time domain simulations confirm that the plasmon coupling between nanoparticles is strong, and that the coupling between the nanoparticles will increase as the nanogap decreases. Additionally, the local field is enhanced at the bottom of the nanoparticle and the gap between the Ag nanoparticle and the AAO template is larger. These results show that Ag nanoparticle array can be used as a high-efficiency SERS substrate.
      Corresponding author: Cheng Zi-Qiang, zqcheng_opt@126.com;liuzhimin2006@163.com ; Liu Zhi-Min, zqcheng_opt@126.com;liuzhimin2006@163.com
    • Funds: Project supported by the Scientific Project of Jiangxi Education Department of China (Grant No. GJJ160532), the Hundred People Long Voyage Project of Jiangxi Province of China (Grant No. 2017-91), and the Visiting Scholar Project for Young Teachers' Development of Jiangxi General Undergraduate Universities, China (Grant No. 2016-109).
    [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240287
计量
  • 文章访问数:  7112
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-07-13
  • 刊出日期:  2018-10-05

/

返回文章
返回