搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石氮空位中心自旋量子调控

刘刚钦 邢健 潘新宇

引用本文:
Citation:

金刚石氮空位中心自旋量子调控

刘刚钦, 邢健, 潘新宇

Quantum control of nitrogen-vacancy center in diamond

Liu Gang-Qin, Xing Jian, Pan Xin-Yu
PDF
导出引用
  • 量子计算和量子传感近年来受到了广泛的关注.金刚石氮空位中心以其简单稳定的自旋能级结构、高效便捷的光学跃迁规则以及室温下超长的自旋量子态相干时间而成为量子信息科学中引人瞩目的新星.本文从实验研究的角度介绍金刚石氮空位中心自旋量子调控的基础理论、典型技术和代表性结果;重点讨论1)如何通过光磁共振方法在室温大气环境下对单个自旋进行探测和相干操控,2)金刚石中自旋量子比特退相干的主要机制和抑制手段,3)自旋态相干操控技术在量子传感中的应用;最后对氮空位中心在量子计算和量子传感中的发展趋势进行了小结.
    Quantum computing and quantum sensing have received much attention in recent years. As an atomic quantum system with super-long coherence time and spin-dependent optical transitions at room temperature, nitrogen-vacancy (NV) center in diamond is one of the well-studied physical systems in quantum information science. In this review, we brief the working principles and quantum control techniques of this single spin system, and also several experimental demonstrations. We focus on the following points:1) coherent manipulation of single spins with optically detected magnetic resonance; 2) main mechanism of NV election spin decoherence and schemes of coherence protection; 3) quantum sensing and quantum computing applications of spin quantum control techniques. Some open questions are discussed at the end of this review.
      通信作者: 刘刚钦, gangqinliu@gmail.com;xypan@aphy.iphy.ac.cn ; 潘新宇, gangqinliu@gmail.com;xypan@aphy.iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB921402,2015CB921103)、中国科学院战略先导科技专项(B类)(批准号:XDB07010300)、国家自然科学基金(批准号:11574386)和中国科学院B类先导科技专题培育项目(批注号:XDPB0803)资助的课题.
      Corresponding author: Liu Gang-Qin, gangqinliu@gmail.com;xypan@aphy.iphy.ac.cn ; Pan Xin-Yu, gangqinliu@gmail.com;xypan@aphy.iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB921402, 2015CB921103), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07010300), the National Natural Science Foundation of China (Grant No. 11574386), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB0803).
    [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [2]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [3]

    Shor P W 1994 SIAM J. Comput. 26 1484

    [4]

    Grover L K 1997 Phys. Rev. Lett. 79 325

    [5]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [6]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503

    [7]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [8]

    Childress L, Hanson R 2013 MRS Bull. 38 134

    [9]

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601 (in Chinese)[李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601]

    [10]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304

    [11]

    Chen M, Meng C, Zhang Q, Duan C K, Shi F, Du J F 2017 Natl. Sci. Rev. DOI:101093/nsr/nwx121

    [12]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [13]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83

    [14]

    Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404

    [15]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [16]

    Liu Y, Kong F, Shi F, Du J 2016 Sci. Bull. 61 1132

    [17]

    Drau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204

    [18]

    Liu G Q, Pan X Y, Jiang Z F, Zhao N, Liu R B 2012 Sci. Rep. 2 432

    [19]

    Marseglia L, Hadden J P, Stanley-Clarke A C et al. 2011 Appl. Phys. Lett. 98 133107

    [20]

    Jiang Q, Liu D, Liu G, Chang Y, Li W, Pan X, Gu C 2014 J. Appl. Phys. 116 044308

    [21]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601

    [22]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [23]

    Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac I, Lukin M D 2012 Science 336 1283

    [24]

    Liu D Q, Liu G Q, Chang Y C, Pan X Y 2014 Physica B 432 84

    [25]

    Naydenov B, Dolde F, Hall L T, Shin C, Fedder H, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Phys. Rev. B 83 081201

    [26]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [27]

    Hanson R, Dobrovitski V V, Feiguin A E, Gywat O, Awschalom D D 2008 Science 320 352

    [28]

    Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 057403

    [29]

    Liu G Q, Jiang Q Q, Chang Y C, Liu D Q, Li W X, Gu C Z, Po H C, Zhang W X, Zhao N, Pan X Y 2014 Nanoscale 6 10134

    [30]

    London P, Scheuer J, Cai J M, Schwarz I, Retzker A, Plenio M B, Katagiri M, Teraji T, Koizumi S, Isoya J, Fischer R, McGuinness L P, Naydenov B, Jelezko F 2013 Phys. Rev. Lett. 111 067601

    [31]

    Liu G Q, Xing J, Ma W L, Wang P, Li C H, Po H C, Zhang Y R, Fan H, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [32]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574

    [33]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542

    [34]

    Drau A, Spinicelli P, Maze J R, Roch J F, Jacques V 2013 Phys. Rev. Lett. 110 060502

    [35]

    Liu G Q, Po H C, Du J F, Liu R B, Pan X Y 2013 Nat. Commun. 4 2254

    [36]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [37]

    Pan X Y, Liu G Q, Yang L L, Fan H 2011 Appl. Phys. Lett. 99 051113

    [38]

    Chang Y C, Liu G Q, Liu D Q, Fan H, Pan X Y 2013 Sci. Rep. 3 1498

    [39]

    Wang N, Liu G Q, Leong W H, Zeng H L, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042

    [40]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M 2011 Nature 478 221

    [41]

    Hensen B, Bernien H, Drau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abelln C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682

    [42]

    Casola F, van der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088

  • [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [2]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [3]

    Shor P W 1994 SIAM J. Comput. 26 1484

    [4]

    Grover L K 1997 Phys. Rev. Lett. 79 325

    [5]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [6]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503

    [7]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [8]

    Childress L, Hanson R 2013 MRS Bull. 38 134

    [9]

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601 (in Chinese)[李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601]

    [10]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304

    [11]

    Chen M, Meng C, Zhang Q, Duan C K, Shi F, Du J F 2017 Natl. Sci. Rev. DOI:101093/nsr/nwx121

    [12]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [13]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83

    [14]

    Beha K, Batalov A, Manson N B, Bratschitsch R, Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404

    [15]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [16]

    Liu Y, Kong F, Shi F, Du J 2016 Sci. Bull. 61 1132

    [17]

    Drau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204

    [18]

    Liu G Q, Pan X Y, Jiang Z F, Zhao N, Liu R B 2012 Sci. Rep. 2 432

    [19]

    Marseglia L, Hadden J P, Stanley-Clarke A C et al. 2011 Appl. Phys. Lett. 98 133107

    [20]

    Jiang Q, Liu D, Liu G, Chang Y, Li W, Pan X, Gu C 2014 J. Appl. Phys. 116 044308

    [21]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601

    [22]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [23]

    Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac I, Lukin M D 2012 Science 336 1283

    [24]

    Liu D Q, Liu G Q, Chang Y C, Pan X Y 2014 Physica B 432 84

    [25]

    Naydenov B, Dolde F, Hall L T, Shin C, Fedder H, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Phys. Rev. B 83 081201

    [26]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [27]

    Hanson R, Dobrovitski V V, Feiguin A E, Gywat O, Awschalom D D 2008 Science 320 352

    [28]

    Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 057403

    [29]

    Liu G Q, Jiang Q Q, Chang Y C, Liu D Q, Li W X, Gu C Z, Po H C, Zhang W X, Zhao N, Pan X Y 2014 Nanoscale 6 10134

    [30]

    London P, Scheuer J, Cai J M, Schwarz I, Retzker A, Plenio M B, Katagiri M, Teraji T, Koizumi S, Isoya J, Fischer R, McGuinness L P, Naydenov B, Jelezko F 2013 Phys. Rev. Lett. 111 067601

    [31]

    Liu G Q, Xing J, Ma W L, Wang P, Li C H, Po H C, Zhang Y R, Fan H, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [32]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574

    [33]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542

    [34]

    Drau A, Spinicelli P, Maze J R, Roch J F, Jacques V 2013 Phys. Rev. Lett. 110 060502

    [35]

    Liu G Q, Po H C, Du J F, Liu R B, Pan X Y 2013 Nat. Commun. 4 2254

    [36]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [37]

    Pan X Y, Liu G Q, Yang L L, Fan H 2011 Appl. Phys. Lett. 99 051113

    [38]

    Chang Y C, Liu G Q, Liu D Q, Fan H, Pan X Y 2013 Sci. Rep. 3 1498

    [39]

    Wang N, Liu G Q, Leong W H, Zeng H L, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042

    [40]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M 2011 Nature 478 221

    [41]

    Hensen B, Bernien H, Drau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abelln C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H, Hanson R 2015 Nature 526 682

    [42]

    Casola F, van der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [4] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [5] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [7] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [8] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [9] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [10] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [13] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [14] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [15] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [16] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [17] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [18] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  9781
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-04-28
  • 刊出日期:  2019-06-20

/

返回文章
返回