搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气体放电等离子体射流源的模拟离子引出实验平台物理特性

陈坚 刘志强 郭恒 李和平 姜东君 周明胜

引用本文:
Citation:

基于气体放电等离子体射流源的模拟离子引出实验平台物理特性

陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜

Physical characteristics of ion extraction simulation system based on gas discharge plasma jet

Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng
PDF
导出引用
  • 离子引出过程是原子蒸气激光同位素分离中非常重要的物理过程之一,而其中关键的等离子体参数(等离子体初始密度和电子温度等)均会对离子引出特性产生影响.基于千赫兹电源驱动的氩气高压交流放电等离子体射流源,建立了离子引出模拟实验平台-2015(IEX-2015),开发了用于诊断氩等离子体参数的碰撞-辐射模型,对等离子体射流区的电子温度和电子数密度等关键参数进行了测量.结果表明,电源输入功率和驱动频率以及工作气体流量均会对等离子体射流区的电子温度和数密度产生影响;在真空腔压强为10-2 Pa量级下,射流区电子数密度和电子温度的可调参数范围分别为1091011 cm-3和1.72.8 eV,这与实际离子引出过程中的等离子体参数范围相近.在此基础上,开展了不同引出电压、极板间距和电子数密度条件下初步的离子引出实验,所得到的离子引出电流变化规律亦与实际原子蒸气激光同位素分离中的离子引出特性定性一致.上述研究结果验证了在IEX-2015上开展离子引出模拟实验的可行性,为后续深入开展离子引出特性的实验研究准备了良好的条件.
    In an atomic vapor laser isotope separation process, the required isotope atoms are ionized selectively by a pulsed laser with a specific narrow line width, and then the produced isotope ions are extracted to the collected plates under an externally applied electromagnetic field. In the whole ion separation process, the ion extraction sub-process is one of the most important physical processes. Previous studies have shown that the key parameters of the laser-induced plasma, e.g., the initial electron number density and temperature, have a significant influence on the ion extraction features. In an actual isotope separation process, a specifically designed laser is necessary to produce the required isotope ions, which, however, leads the whole facility to have a very complicated structure, high capital cost, and especially, very narrow window of the key plasma parameters. These will, to some extent, limit a more in-depth investigation of the influences of the key plasma parameters on the ion extraction characteristics. In this paper, an ion extraction platform (ion extraction simulation experimental platform-2015, IEX-2015) is developed on the basis of a gas discharge plasma jet driven by a kilo-hertz high-voltage power supply. And an argon plasma collisional-radiative model is established to measure the electron temperature and number density in the plasma jet region. The experimental results show that the power input and driving frequency of the power supply and the argon mass flow rate can all affect the electron temperature and electron number density. The measured variation ranges of the electron number density and temperature are 109-1011 cm-3 and 1.7-2.8 eV, respectively, under a chamber pressure on the order of 10-2 Pa, which are close to the parameter levels in the actual ion extraction process. Subsequently, the preliminary ion extraction experiments are conducted under different extraction conditions including different externally applied voltages, different electrode distances and different plasma densities. The experimental results are also qualitatively consistent with those in an actual ion extraction process. The preceding preliminary experimental results show that it is feasible to conduct the ion extraction simulation study on IEX-2015. This is very helpful for systematically studying the ion extraction characteristics under different operating conditions in our future research.
      通信作者: 李和平, liheping@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11775128)资助的课题.
      Corresponding author: Li He-Ping, liheping@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775128).
    [1]

    Letokhov V S 1977 Ann. Rev. Phys. Chem. 28 133

    [2]

    Chen F F 1982 Phys. Fluid 25 2385

    [3]

    Widner M, Alexeff I, Jones W D, Lonngren K E 1970 Phys. Fluid 13 2532

    [4]

    Okano K 1992 J. Nucl. Sci. Technol. 29 601

    [5]

    Yuan K X, Xu P F, Yu P Z, Wang J Y 1993 Chin. J. Atom. Mol. Phys. 10 2839 (in Chinese) [袁奎训, 徐品方, 俞沛增, 王金月 1993 原子与分子物理学报 10 2839]

    [6]

    Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825 (in Chinese) [李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825]

    [7]

    Li H P, Wang X, Wang P, Chai J J, Li Z X 2016 High Voltage Eng. 42 706 (in Chinese) [李和平, 王鑫, 王鹏, 柴俊杰, 李占贤 2016 高电压技术 42 706]

    [8]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734

    [9]

    Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180

    [10]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301

    [11]

    Gundienkov V A, Tkachev A N, Yakovlenko S I 2004 Quantum Electron. 34 589

    [12]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064

    [13]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818

    [14]

    Chen R 2005 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [陈戎 2005 硕士学位论文 (北京: 清华大学)]

    [15]

    Chen J, Xiang J Q, Guo H, Li H P, Chen X, Wang P, Chai J J, Jiang D J, Zhou M S 2017 High Voltage Eng. 43 1830 (in Chinese) [陈坚, 向金秋, 郭恒, 李和平, 陈兴, 王鹏, 柴俊杰, 姜东君, 周明胜 2017 高电压技术 43 1830]

    [16]

    Zhidkov A G 1998 Phys. Plasmas 5 541

    [17]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367

    [18]

    Cao Z L, Zhang W X, Bao C Y 2007 J. Chin. Mass Spectr. Soc. 28 5 (in Chinese) [曹宗亮, 张微啸, 包成玉 2007 质谱学报 28 5]

    [19]

    Majumder A, Mago V K, Ray A K, Kather P T, Das A K 2005 Appl. Phys. B 81 669

    [20]

    Bates D R, Kingston A E, McWhirter R W P 1962 Proc. Roy. Soc. A 267 297

    [21]

    Slavk J 1991 Contrib. Plasma Phys. 31 605

    [22]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenhlscher D 2009 J. Phys. D: Appl. Phys. 42 045208

    [23]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467

  • [1]

    Letokhov V S 1977 Ann. Rev. Phys. Chem. 28 133

    [2]

    Chen F F 1982 Phys. Fluid 25 2385

    [3]

    Widner M, Alexeff I, Jones W D, Lonngren K E 1970 Phys. Fluid 13 2532

    [4]

    Okano K 1992 J. Nucl. Sci. Technol. 29 601

    [5]

    Yuan K X, Xu P F, Yu P Z, Wang J Y 1993 Chin. J. Atom. Mol. Phys. 10 2839 (in Chinese) [袁奎训, 徐品方, 俞沛增, 王金月 1993 原子与分子物理学报 10 2839]

    [6]

    Li H P, Wang P, Wang X, You W, Chai J J, Li Z Y 2015 High Voltage Eng. 41 2825 (in Chinese) [李和平, 王鹏, 王鑫, 尤伟, 柴俊杰, 李增耀 2015 高电压技术 41 2825]

    [7]

    Li H P, Wang X, Wang P, Chai J J, Li Z X 2016 High Voltage Eng. 42 706 (in Chinese) [李和平, 王鑫, 王鹏, 柴俊杰, 李占贤 2016 高电压技术 42 706]

    [8]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734

    [9]

    Nishio R, Yamada K, Suzuki K, Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180

    [10]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301

    [11]

    Gundienkov V A, Tkachev A N, Yakovlenko S I 2004 Quantum Electron. 34 589

    [12]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064

    [13]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818

    [14]

    Chen R 2005 M. S. Thesis (Beijing: Tsinghua University) (in Chinese) [陈戎 2005 硕士学位论文 (北京: 清华大学)]

    [15]

    Chen J, Xiang J Q, Guo H, Li H P, Chen X, Wang P, Chai J J, Jiang D J, Zhou M S 2017 High Voltage Eng. 43 1830 (in Chinese) [陈坚, 向金秋, 郭恒, 李和平, 陈兴, 王鹏, 柴俊杰, 姜东君, 周明胜 2017 高电压技术 43 1830]

    [16]

    Zhidkov A G 1998 Phys. Plasmas 5 541

    [17]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367

    [18]

    Cao Z L, Zhang W X, Bao C Y 2007 J. Chin. Mass Spectr. Soc. 28 5 (in Chinese) [曹宗亮, 张微啸, 包成玉 2007 质谱学报 28 5]

    [19]

    Majumder A, Mago V K, Ray A K, Kather P T, Das A K 2005 Appl. Phys. B 81 669

    [20]

    Bates D R, Kingston A E, McWhirter R W P 1962 Proc. Roy. Soc. A 267 297

    [21]

    Slavk J 1991 Contrib. Plasma Phys. 31 605

    [22]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenhlscher D 2009 J. Phys. D: Appl. Phys. 42 045208

    [23]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467

  • [1] 朱海龙, 师玉军, 王嘉伟, 张志凌, 高一宁, 张丰博. 高气压氩气辉光放电条纹等离子体的形成和演化. 物理学报, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [2] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [3] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [4] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型. 物理学报, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [5] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [6] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [7] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型. 物理学报, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [8] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [9] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究. 物理学报, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [11] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [12] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [13] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用. 物理学报, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [14] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型. 物理学报, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [15] 谢国锋. 利用溅射原子角分布规律改进平行板静电场法. 物理学报, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [16] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [17] 宋晓鹏, 陈 戎, 包成玉, 王德武. 平行板静电场法离子引出的对称收集. 物理学报, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [18] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集. 物理学报, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [19] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
    [20] 孟续军, 孙永盛, 龙燕秋. 热动平衡态下热等离子体内的离子丰度研究. 物理学报, 1998, 47(4): 625-631. doi: 10.7498/aps.47.625
计量
  • 文章访问数:  6624
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-06-05
  • 刊出日期:  2019-09-20

/

返回文章
返回