搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前缘曲率对三维边界层内被激发出非定常横流模态的影响研究

陆昌根 沈露予

引用本文:
Citation:

前缘曲率对三维边界层内被激发出非定常横流模态的影响研究

陆昌根, 沈露予

Influence of leading-edge curvature on excited unsteady cross-flow vortices in three-dimensional boundary-layer

Lu Chang-Gen, Shen Lu-Yu
PDF
导出引用
  • 三维边界层感受性问题是三维边界层层流向湍流转捩的初始阶段,是实现三维边界层转捩预测与控制的关键环节.在高湍流度的环境下,非定常横流模态的失稳是导致三维边界层流动转捩的主要原因;但是,前缘曲率对三维边界层感受性机制作用的研究也是十分重要的课题之一.因此,本文采用直接数值模拟方法研究在自由来流湍流作用下具有不同椭圆形前缘三维(后掠翼平板)边界层内被激发出非定常横流模态的感受性机制;揭示不同椭圆形前缘曲率对三维边界层内被激发出非定常横流模态的扰动波波包传播速度、传播方向、分布规律、感受性系数以及分别提取获得一组扰动波的幅值、色散关系和增长率等关键因素的影响;建立在不同椭圆形前缘曲率情况下,三维边界层内被激发出非定常横流模态的感受性问题与自由来流湍流的强度和运动方向变化之间的内在联系;详细分析了不同强度各向异性的自由来流湍流在激发三维边界层感受性机制的物理过程中起着何种作用等.通过上述研究将有益于拓展和完善流动稳定性理论,为三维边界层内层流向湍流转捩的预测与控制提供依据.
    Three-dimensional boundary-layer receptivity is the first stage of the laminar-turbulent transition in a three-dimensional boundary layer, and also a key issue for predicting and controlling the laminar-turbulent transition in the three-dimensional boundary layer. At a high turbulence level, the three-dimensional boundary-layer instability in the transition is caused mainly by the unsteady cross-flow vortices. And the leading-edge curvature has a significant influence on three-dimensional boundary-layer receptivity. In view of this, the direct numerical simulation is utilized in this paper to study the mechanism of receptivity to exciting unsteady cross-flow vortices in the three-dimensional (swept-plate) boundary layer with various elliptic leading edges. In order to solve the Navier-Stokes equation numerically, a modified fourth-order Runge-Kutta scheme is introduced for discretization in time; high-order compact finite difference schemes are utilized for discretization in the x-and y-direction; and Fourier transform is used in the z-direction. The pressure Helmholtz equation is solved by a fourth-order iterative scheme. Additionally, the numerical calculation is performed in the curvilinear coordinate system via Jaccobi transform. And the elliptic equation technique is used to gene-rate the body-fitted mesh. The effect of leading-edge curvature on the propagation speed and direction, distribution and receptivity coefficient of the excited unsteady cross-flow vortex wave packet, and the amplitude, dispersion relation and growth rate of the extracted unsteady cross-flow vortex are revealed. In addition, the inner link among the receptivity to unsteady cross-flow vortex, intensity, and direction of free-stream turbulence is established. Furthermore, the receptivity to anisotropic free-stream turbulence is also analyzed in detail. The numerical results indicate that the more intense receptivity to the unsteady cross-flow vortex wave packets is triggered with a smaller leading-edge curvature; whereas, the less intense receptivity is triggered with a greater leading-edge curvature. The receptivity to the unsteady cross-flow vortex wave packets in different curvatures are also found to vary with the angle of free-stream turbulence. Moreover, the anisotropic degree of free-stream turbulence can affect the excitation of the unsteady cross-flow vortex obviously. Through the above study, a further step can be taken to understand the prediction and control of laminar-turbulent transition in the three-dimensional boundary layer and also improve the theory of the hydrodynamic stability.
      通信作者: 陆昌根, cglu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472139)、江苏省高等学校自然科学研究面上项目(批准号:17KJB130008)和江苏高校优势学科建设工程(PAPD)资助的课题.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472139), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 17KJB130008), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
    [1]

    Saric W S, Reed H L, Edward W B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Bippes H 1999 Prog. Aerosp. Sci. 35 363

    [3]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [4]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [5]

    Reibert M S, Saric W S 1997 28th Fluid Dynamics Conference Snowmass Village, CO, USA, June 29-July 2, 1997 p1816

    [6]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [7]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [8]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [9]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [10]

    Schrader L U, Brandt L, Mavriplis C 2010 J. Fluid. Mech. 653 245

    [11]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2011 6th AIAA Theoretical Fluid Mechanics Conference Honolulu, Hawaii, USA, June 27-30, 2011 p3294

    [12]

    Tempelmann D, Schrader L U, Hanifi A 2012 J. Fluid. Mech. 711 516

    [13]

    Borodulin V I, Ivanov A V, Kachanov Y S 2013 J. Fluid. Mech. 716 487

    [14]

    Shen L Y, Lu C G 2016 Acta Phys. Sin. 65 014703 (in Chinese)[沈露予, 陆昌根 2016 物理学报 65 014703]

    [15]

    Lu C G, Shen L Y 2017 Acta Phys. Sin. 66 204702 (in Chinese)[陆昌根, 沈露予 2017 物理学报 66 204702]

    [16]

    Lin R S, Malik M R 1997 J. Fluid. Mech. 333 125

    [17]

    Shen L Y, Lu C G 2018 Acta Phys. Sin. 67 184703 (in Chinese)[沈露予, 陆昌根 2018 物理学报 67 184703]

    [18]

    Hoffmann K A, Chiang S T 2000 Computational Fluid Dynamics (Vol. I) (Kansas: Engineering Education System) p358

    [19]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [20]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theortical Fluid Mechanics Conference Hawaii, USA, June 27-30, 2011 p3292

  • [1]

    Saric W S, Reed H L, Edward W B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Bippes H 1999 Prog. Aerosp. Sci. 35 363

    [3]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [4]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [5]

    Reibert M S, Saric W S 1997 28th Fluid Dynamics Conference Snowmass Village, CO, USA, June 29-July 2, 1997 p1816

    [6]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [7]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [8]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [9]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [10]

    Schrader L U, Brandt L, Mavriplis C 2010 J. Fluid. Mech. 653 245

    [11]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2011 6th AIAA Theoretical Fluid Mechanics Conference Honolulu, Hawaii, USA, June 27-30, 2011 p3294

    [12]

    Tempelmann D, Schrader L U, Hanifi A 2012 J. Fluid. Mech. 711 516

    [13]

    Borodulin V I, Ivanov A V, Kachanov Y S 2013 J. Fluid. Mech. 716 487

    [14]

    Shen L Y, Lu C G 2016 Acta Phys. Sin. 65 014703 (in Chinese)[沈露予, 陆昌根 2016 物理学报 65 014703]

    [15]

    Lu C G, Shen L Y 2017 Acta Phys. Sin. 66 204702 (in Chinese)[陆昌根, 沈露予 2017 物理学报 66 204702]

    [16]

    Lin R S, Malik M R 1997 J. Fluid. Mech. 333 125

    [17]

    Shen L Y, Lu C G 2018 Acta Phys. Sin. 67 184703 (in Chinese)[沈露予, 陆昌根 2018 物理学报 67 184703]

    [18]

    Hoffmann K A, Chiang S T 2000 Computational Fluid Dynamics (Vol. I) (Kansas: Engineering Education System) p358

    [19]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [20]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theortical Fluid Mechanics Conference Hawaii, USA, June 27-30, 2011 p3292

  • [1] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [2] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [3] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [4] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [5] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [6] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [7] 上官丹骅, 邓力, 张宝印, 姬志成, 李刚. 非定常输运问题适应于消息传递并行编程环境的香农熵计算方法. 物理学报, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [8] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [9] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动. 物理学报, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [10] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [11] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [12] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用. 物理学报, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [13] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性. 物理学报, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [14] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性. 物理学报, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [15] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [16] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [17] 高莹莹, 何枫, 沈孟育. 非定常动态演化伴随优化设计方法. 物理学报, 2012, 61(20): 200206. doi: 10.7498/aps.61.200206
    [18] 李刚, 邓力, 黄则尧, 李树. 非定常辐射输运问题的蒙特卡罗自适应偏倚抽样. 物理学报, 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [19] 王晓芹, 逯怀新, 赵加强. 广义GHZ态的纠缠与非定域性. 物理学报, 2011, 60(11): 110301. doi: 10.7498/aps.60.110301
    [20] 廖长庚, 陈子翃, 罗成立. 非简并双光子Jaynes-Cummings模型中贝尔非定域性的演化. 物理学报, 2010, 59(12): 8526-8534. doi: 10.7498/aps.59.8526
计量
  • 文章访问数:  5662
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 修回日期:  2018-07-29
  • 刊出日期:  2018-11-05

/

返回文章
返回