搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光解水的原子尺度机理和量子动力学

申钰田 孟胜

引用本文:
Citation:

光解水的原子尺度机理和量子动力学

申钰田, 孟胜

Water photosplitting: Atomistic mechanism and quantum dynamics

Shen Yu-Tian, Meng Sheng
PDF
导出引用
  • 利用阳光直接将水分解为不含碳的氢气燃料和氧气是面向全球能源危机环保且低成本的解决方案.得益于电子结构理论和量子模拟方法的进步,人们已经能够直接研究在纳米颗粒上等离激元诱导光解水过程在原子尺度上的反应机理和超快动力学.本文简述近年来的相关工作进展.吸附在氧化物薄膜上的金纳米颗粒很有希望成为水分解的高效新型光催化剂.在光激发条件下,水分解反应速率和光强、热电子转移之间有强相关性.水分解速率不仅取决于光吸收强度,还受到等离激元量子振动模式的调控.这对于太阳能光解水器件中纳米颗粒的设计有借鉴意义.我们发现液态水在金团簇等离激元催化下100 fs内就能产生氢气.超快量子动力学模拟表明,该过程中场增强起主导作用,从金属到水反键态的超快电荷转移也扮演着重要角色.综合这些原子尺度上的量子动力学研究,我们提出受激水分子中氢原子高速碰撞(速度远远超出其热速度)合成氢分子的“链式反应”机理.
    Directly splitting water into carbon-free H2 fuel and O2 gases by sunlight is one of the most environmentally-friendly and potentially low cost approaches to solving the grand global energy challenge. Recent progress of electronic structure theory and quantum simulations allow us to directly explore the atomistic mechanism and ultrafast dynamics of water photosplitting on plasmonic nanoparticles. Here in this paper, we briefly introduce the relevant researches in our group. First we propose that the supported gold nanoparticles on oxide thin film/mental should be able to potentially serve as efficient photocatalysts for water splitting. Then, under the light illumination, we identify a strong correlation among light intensity, hot electron transfer rate, and water splitting reaction rate. The rate of water splitting is dependent not only on respective optical absorption strength, but also on the quantum oscillation mode of plasmonic excitation, which can help to design nanoparticles in water photosplitting cells. Finally, we simulate the ultrafast electron-nuclear quantum dynamics of H2 generation with plasmonic gold cluster on a time scale of~100 fs in liquid water. We identify that the water splitting is dominated by field enhancement effect and associated with charge transfer from gold to antibonding orbital of water molecule. Based on all atomistic mechanism and quantum dynamics above, we present a “chain-reaction” H2 production mechanism via high-speed (much higher than their thermal velocity) collision of two hydrogen atoms from different water molecules under light illumination.
    [1]

    Linic S, Christopher P, Ingram D B 2011 Nat. Publ. Gr. 10 911

    [2]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2013 J. Am. Chem. Soc. 136 64

    [3]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [4]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011

    [5]

    Ager J W, Shaner M R, Walczak K A, Sharp I D, Ardo S 2015 Energy Environ. Sci. 8 2811

    [6]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155

    [7]

    Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514

    [8]

    Murray W A, Barnes W L 2007 Adv. Mater. 19 3771

    [9]

    Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329

    [10]

    Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B 2011 Nano Lett. 11 1111

    [11]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [12]

    Lin X, Nilius N, Freund H J, Walter M, Frondelius P, Honkala K, Hakkinen H 2009 Phys. Rev. Lett. 102 206801

    [13]

    Ding Z, Gao S, Meng S 2015 New J. Phys. 17 13023

    [14]

    Meng S, Wang E G, Gao S 2004 Phys. Rev. B 69 195404

    [15]

    Ding Z, Yan L, Li Z, Ma W, Lu G, Meng S 2017 Phys. Rev. Mater. 1 45404

    [16]

    Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442

    [17]

    Jung J, Shin H J, Kim Y, Kawai M 2010 Phys. Rev. B 82 85413

    [18]

    Hu X L, Klimeš J, Michaelides A 2010 Phys. Chem. Chem. Phys. 12 3953

    [19]

    Yan L, Wang F, Meng S 2016 ACS Nano 10 5452

    [20]

    Zheng J, Zhang C, Dickson R M 2004 Phys. Rev. Lett. 93 77402

    [21]

    Zhao L, Jensen L, Schatz G C 2006 J. Am. Chem. Soc. 128 2911

    [22]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044

    [23]

    Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H, Chen H Y 2015 J. Am. Chem. Soc. 137 7365

    [24]

    Ingram D B, Linic S 2011 J. Am. Chem. Soc. 133 5202

    [25]

    Yan L, Xu J, Wang F, Meng S 2017 J. Phys. Chem. Lett. 9 63

  • [1]

    Linic S, Christopher P, Ingram D B 2011 Nat. Publ. Gr. 10 911

    [2]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2013 J. Am. Chem. Soc. 136 64

    [3]

    Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253

    [4]

    Li X, Xiao D, Zhang Z 2013 New J. Phys. 15 23011

    [5]

    Ager J W, Shaner M R, Walczak K A, Sharp I D, Ardo S 2015 Energy Environ. Sci. 8 2811

    [6]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155

    [7]

    Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L, Broyer M 2006 Theor. Chem. Acc. 116 514

    [8]

    Murray W A, Barnes W L 2007 Adv. Mater. 19 3771

    [9]

    Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329

    [10]

    Liu Z, Hou W, Pavaskar P, Aykol M, Cronin S B 2011 Nano Lett. 11 1111

    [11]

    Li J, Li X, Zhai H J, Wang L S 2003 Science 299 864

    [12]

    Lin X, Nilius N, Freund H J, Walter M, Frondelius P, Honkala K, Hakkinen H 2009 Phys. Rev. Lett. 102 206801

    [13]

    Ding Z, Gao S, Meng S 2015 New J. Phys. 17 13023

    [14]

    Meng S, Wang E G, Gao S 2004 Phys. Rev. B 69 195404

    [15]

    Ding Z, Yan L, Li Z, Ma W, Lu G, Meng S 2017 Phys. Rev. Mater. 1 45404

    [16]

    Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442

    [17]

    Jung J, Shin H J, Kim Y, Kawai M 2010 Phys. Rev. B 82 85413

    [18]

    Hu X L, Klimeš J, Michaelides A 2010 Phys. Chem. Chem. Phys. 12 3953

    [19]

    Yan L, Wang F, Meng S 2016 ACS Nano 10 5452

    [20]

    Zheng J, Zhang C, Dickson R M 2004 Phys. Rev. Lett. 93 77402

    [21]

    Zhao L, Jensen L, Schatz G C 2006 J. Am. Chem. Soc. 128 2911

    [22]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044

    [23]

    Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H, Chen H Y 2015 J. Am. Chem. Soc. 137 7365

    [24]

    Ingram D B, Linic S 2011 J. Am. Chem. Soc. 133 5202

    [25]

    Yan L, Xu J, Wang F, Meng S 2017 J. Phys. Chem. Lett. 9 63

  • [1] 汪长超, 聂青苗, 石亮, 陈乃波, 胡来归, 鄢波. 混合沉积有机分子区域选择性生长的动力学蒙特卡罗模拟研究. 物理学报, 2024, 73(12): 126801. doi: 10.7498/aps.73.20231779
    [2] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [3] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] 张雨佳, 卢敏健, 李岩, 尉昊赟. 配体修饰的金纳米颗粒的二次谐波散射多极子分析. 物理学报, 2022, 71(17): 170301. doi: 10.7498/aps.71.20220669
    [5] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211863
    [6] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [8] 关梦雪, 廉超, 孟胜. 基于原子轨道基的实时密度泛函理论:方法及应用. 物理学报, 2018, 67(12): 120201. doi: 10.7498/aps.67.20180487
    [9] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [10] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率. 物理学报, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [13] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [14] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [15] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [16] 袁铮, 刘慎业, 曹柱荣, 李云峰, 陈韬, 黎航, 张海鹰, 陈铭. 金阴极的选择性光电效应. 物理学报, 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [17] 李 俊, 张凯旺, 孟利军, 刘文亮, 钟建新. 碳纳米管表面金纳米颗粒的形成与结构转变. 物理学报, 2008, 57(1): 382-386. doi: 10.7498/aps.57.382
    [18] 王 凯, 杨 光, 龙 华, 李玉华, 戴能利, 陆培祥. 金纳米颗粒的有序制备及其光学特性. 物理学报, 2008, 57(6): 3862-3867. doi: 10.7498/aps.57.3862
    [19] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [20] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究. 物理学报, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
计量
  • 文章访问数:  7660
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2018-09-30
  • 刊出日期:  2019-01-05

/

返回文章
返回