搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷墨打印钙钛矿太阳能电池研究进展与展望

夏俊民 梁超 邢贵川

引用本文:
Citation:

喷墨打印钙钛矿太阳能电池研究进展与展望

夏俊民, 梁超, 邢贵川

Inkjet printed perovskite solar cells: progress and prospects

Xia Jun-Min, Liang Chao, Xing Gui-Chuan
PDF
HTML
导出引用
  • 作为近年来光伏领域最具竞争力的材料之一, 有机-无机杂化钙钛矿受到了广泛的关注. 然而, 由于薄膜制备手段的限制, 工业化大面积生产钙钛矿太阳能电池仍处于起步阶段. 喷墨打印技术是由家庭和办公室印刷发展而来的一种重要的工业制造技术, 广泛应用于各种印刷电子行业. 与其他沉积方法相比, 它具有成本低、材料利用率高和图案化精度高等优势. 作为一种直接书写技术, 喷墨打印已经显示出了巨大的工业化潜力, 并有望在钙钛矿太阳能电池产业化中获得应用. 本文回顾了喷墨打印钙钛矿太阳能电池的发展进程, 对喷墨打印技术应用到钙钛矿太阳能电池的各个功能层 (电极、空穴传输层、电子传输层、钙钛矿活性层) 的情况进行了总结, 并分析了喷墨打印钙钛矿太阳能电池的现状. 最后, 讨论了现阶段喷墨打印钙钛矿太阳能电池所面临的挑战, 并对未来喷墨打印技术在钙钛矿材料的商业化应用方面进行了展望.
    In the field of photovoltaic materials, perovskite has attracted extensive attention during the past years, owing to its excellent photovoltaic properties, including high charge carrier mobility, low exciton binding energy, long charge carrier diffusion length, broad light absorption spectrum, large absorption coefficient, and low-cost solution processability. However, due to the limitations of film preparation methods (typical spin coating), industrial large-scale production of perovskite solar cells is still in infancy. The inkjet printing technology is a significant manufacturing technology developed from home and office printing and widely used in various printing electronics industries. Compared with other deposition methods, it possesses many advantages, including low cost, high material utilization, high patterning precision, etc. As a direct writing technology, the inkjet printing has shown great industrial potential and is expected to be employed in the industrialization of perovskite solar cells. In this paper, we review the research progress of perovskite solar cells fabricated via the inkjet printing and the application of inkjet printing technology to various functional layers (electrode, hole transport layer, electron transport layer, perovskite active layer). Finally, the challenges of inkjet printed perovskite solar cells at this stage are discussed, and the commercialization direction of inkjet printed perovskite solar cells is also pointed out.
      通信作者: 邢贵川, gcxing@umac.mo
    • 基金项目: 澳门科技发展基金(批准号: FDCT-116/2016/A3, FDCT-091/2017/A2, FDCT-014/2017/AMJ)、澳门大学研究基金(批准号: SRG2016-00087-FST, MYRG2018-00148-IAPME)、国家自然科学基金(批准号: 91733302, 61605073, 2015CB932200)和国家青年千人计划资助的课题.
      Corresponding author: Xing Gui-Chuan, gcxing@umac.mo
    • Funds: Project supported by the Macau Science and Technology Development Funds, China (Grant Nos. FDCT-116/2016/A3, FDCT-091/2017/A2, FDCT-014/2017/AMJ), the Research Grants from University of Macau, China (Grant Nos. SRG2016-00087-FST, MYRG2018-00148-IAPME), the National Natural Science Foundation of China (Grant Nos. 91733302, 61605073, 2015CB932200), and the Young 1000 Talents Global Recruitment Program of China.
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar

    [3]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [4]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar

    [5]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [6]

    Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar

    [7]

    Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar

    [8]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [9]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [11]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar

    [12]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [13]

    Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar

    [14]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [15]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [16]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]

    [17]

    Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

    [18]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457

    [19]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [20]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar

    [21]

    Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar

    [22]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [23]

    Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar

    [24]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [25]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [26]

    Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar

    [27]

    Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar

    [28]

    Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar

    [29]

    Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar

    [30]

    Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar

    [31]

    van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar

    [32]

    Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar

    [33]

    Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar

    [34]

    Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar

    [35]

    Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar

    [36]

    Calvert P 2001 Chem. Mater. 13 3299Google Scholar

    [37]

    Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar

    [38]

    Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar

    [39]

    Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar

    [40]

    Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar

    [41]

    Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [42]

    Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar

    [43]

    Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295

    [44]

    Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar

    [45]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217

    [46]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [47]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [48]

    Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764

    [49]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995

    [50]

    Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184

    [51]

    Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317

    [52]

    Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191

  • 图 1  (a)钙钛矿晶体结构; (b) PeSCs器件结构, n-i-p (左)和p-i-n (右).

    Fig. 1.  (a) Structure of perovskite crystal; (b) device structure of PeSCs, n-i-p (left) and p-i-n (right).

    图 2  IJP示意图 (a) CIJP; (b) DODIJP[28]

    Fig. 2.  Schematic diagram of IJP: (a) CIJP; (b) DODIJP[28].

    图 3  IJP法制备钙钛矿薄膜 (a) RIJP[43]; (b)一步IJP法[45]; (c)两步IJP法与旋涂法制备薄膜的对比[46]; (d) IJP三阳离子PeSCs的断面扫描电子显微镜(scanning electron microscope, SEM)图[47]; (e)结合LDS层的PeSCs器件结构[48]; (f)在室灯下掺杂浓度分别为5 wt% (左)和0.5 wt% (右)的IJP LDS层照片[48]; (g) NiOx作为HTLs的器件结构[49]; (h)使用不同方法(旋涂和IJP)在NiOx上沉积钙钛矿层的电池性能比较[49]; (i)紫外照射下器件降解情况[49]

    Fig. 3.  Inkjet printed perovskite thin films: (a) Schematic diagram of RIJP[43]; (b) fabrication process of one-step inkjet printing[45]; (c) comparison of thin films on mesoporous TiO2 layer using inkjet printing and spin-coating[46]; (d) cross-sectional SEM images of inkjet-printed triple cation perovskite solar cells[47]; (e) device structure of LDS based perovskite solar cells[48]; (f) photograph of inkjet-printed LDS layers with a doping concentration of 5 wt% (left) and 0.5 wt% (right) under room light[49]; (g) structure of the perovskite solar cells with the NiOx as the HTLs[49]; (h) performance comparison of inkjet-printed and spin-coated perovskite solar cells with the NiOx as the HTLs[49]; (i) device degradation under intense UV radiation[49].

    图 4  IJP法制备载流子传输层和电极 (a) IJP AgNW沉积于PVSK/PC61BM/PEI表面SEM照片[50]; (b)采用旋涂法和IJP法制备的介孔TiO2器件的伏安特性曲线[51]; (c) IJP TiO2及钙钛矿层的器件伏安特性曲线[51].

    Fig. 4.  Inkjet printed carrier transport layer and electrode: (a) SEM image of printed AgNW electrode on PVSK/PC61BM/PEI surface[50]; (b) voltage-current characteristic curves of solar cells with spin-coated and inkjet-printed mesoporous TiO2[51]; (c) voltage-current characteristic curve of the solar cell with inkjet prited TiO2 and perovskite layers[51].

    表 1  基于IJP技术制备的PeSCs的性能与结构

    Table 1.  Summary of structure and performance of inkjet printed PeSCs.

    IJP层 器件结构面积/cm2性能参考
    文献
    Voc/VJsc/mA·cm–2FF/%PCE/%
    Top electrode and active layerGlass/FTO/TiO2/MAPbI3(IJP)/C(IJP)0.150.9517.2071.011.60[38]
    Active layerGlass/FTO/com-TiO2/meso-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au0.040.9119.5569.012.30[39]
    Active layerGlass/FTO/com-TiO2/meso-TiO2/ZrO2/Perovskite (IJP)/C0.160.8415.3065.78.47[40]
    Active layerGlass/ITO/PEDOT:PSS/PbI2-(2MA:1FA)I(IJP)/PCBM/Al0.8718.7768.011.10[42]
    Active layerGlass/ITO/PEDOT:PSS/Pb(OAc)2-CH3NH3I(IJP)/PCBM/Al0.504.2844.40.94[43]
    Active layerGlass/FTO/com-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au0.091.0018.405611.30[44]
    Active layerGlass/FTO/TiO2/C60/MAPbI3(IJP)/spiro-MeOTAD/Au0.04
    4
    1.08
    1.04
    22.71
    20.40
    69.58
    62.57
    17.04
    13.27
    [45]
    Active layerGlass/FTO/c-TiO2/m-TiO2/PbI2(IJP) + MAI(Vapor)/Au0.041.0622.5175.118.64[46]
    2.021.0621.8876.517.74
    Active layerGlass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au0.091.0621.56712.9[47]
    Active layerLDS(IJP)/Glass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au0.091.0621.5679.4[48]
    Active layerglass/ITO/NiOx/Csx(FA0.83MA0.17)1–xPb (Br0.15I0.85)3(IJP)/C60/BCP/Au0.1051.0922.779.019.5[49]
    Top electrodeITO/PEDOT: PSS/CH3NH3PbClxI3–x/
    PC61BM/PEI/AgNW(IJP)
    0.091.0418.177514.17[50]
    ETLs and active layerGlass/FTO/com-TiO2/meso-TiO2(IJP)/perovskite (IJP)/spiro-MeOTAD/Au< 11.0522.6576.318.29[51]
    ETLs, active layer and HTLsITO/WOx(IJP)/CH3NH3PbI3–xClx(IJP)/
    spiro-MeOTAD(IJP)/Au
    0.74422.16510.7[52]
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar

    [3]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [4]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar

    [5]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [6]

    Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar

    [7]

    Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar

    [8]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [9]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [11]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar

    [12]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [13]

    Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar

    [14]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [15]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [16]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]

    [17]

    Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

    [18]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457

    [19]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [20]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar

    [21]

    Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar

    [22]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [23]

    Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar

    [24]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [25]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [26]

    Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar

    [27]

    Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar

    [28]

    Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar

    [29]

    Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar

    [30]

    Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar

    [31]

    van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar

    [32]

    Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar

    [33]

    Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar

    [34]

    Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar

    [35]

    Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar

    [36]

    Calvert P 2001 Chem. Mater. 13 3299Google Scholar

    [37]

    Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar

    [38]

    Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar

    [39]

    Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar

    [40]

    Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar

    [41]

    Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [42]

    Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar

    [43]

    Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295

    [44]

    Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar

    [45]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217

    [46]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [47]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [48]

    Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764

    [49]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995

    [50]

    Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184

    [51]

    Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317

    [52]

    Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] 高博文, 孟婧. 全喷墨打印的大面积柔性CH3NH3PbI3钙钛矿太阳能电池. 物理学报, 2021, 70(20): 208801. doi: 10.7498/aps.70.20210788
    [5] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [6] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [7] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [8] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [9] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [10] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [11] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [12] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [13] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [16] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [17] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [18] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 物理学报, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [19] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  19756
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-03-24
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回