-
The power conversion efficiency of organic-inorganic hybrid perovskite solar cell has exceeded 24%. The rapid increase in efficiency coupled with its cost-effective fabrication has attracted tremendous attention toward the commercialization of perovskite solar cells. The biggest challenge that hinders the commercialization of perovskite solar cells is the long-term instability of materials and the corresponding devices, which cannot compete with other commercialized solar cells, such as Si cells, in terms of lifetime. The intrinsic instability of perovskite material itself is the most critical challenge faced by researchers. In this study, we discuss the intrinsic instability of organic-inorganic hybrid perovskite materials from the aspects of both chemical instability and phase instability. Suggestions for improving the stability of perovskite solar cell are provided from the perspective of composition design and fabrication process.
-
Keywords:
- hybrid perovskite /
- intrinsic stability
[1] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar
[2] Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar
[3] Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar
[4] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[6] The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]
[7] Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[8] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[9] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[10] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar
[11] Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar
[12] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar
[13] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[14] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[15] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar
[16] Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar
[17] 张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar
Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar
[18] TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar
[19] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[20] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar
[21] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar
[22] Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar
[23] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar
[24] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar
[25] Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar
[26] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar
[27] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar
[28] Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar
[29] Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar
[30] Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar
[31] Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar
[32] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar
[33] Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215
[34] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar
[35] Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar
[36] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar
[37] Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar
[38] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar
[39] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar
[40] Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar
[41] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar
[42] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar
[43] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar
[44] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar
[45] Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar
[46] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar
[47] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar
[48] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar
[49] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[50] Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105
[51] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar
[52] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar
[53] Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar
[54] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar
[55] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar
[56] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar
[57] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar
[58] Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3
[59] Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar
[60] Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar
[61] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar
[62] Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar
[63] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar
[64] Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar
[65] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[66] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar
[67] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar
[68] Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[69] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar
[70] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar
[71] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar
[72] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar
[73] Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[74] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[75] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar
[76] Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar
[77] Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar
[78] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[79] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar
[80] Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8
[81] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284
[82] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar
[83] Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar
[84] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar
[85] CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar
[86] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar
[87] Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785
-
图 7 (a) DMA掺杂薄膜与HI酸添加薄膜对比; (b) DMA掺杂薄膜与HI酸添加薄膜XRD对比; (c) DMA掺杂薄膜与DMF和HI反应所得产物DMAI的核磁共振对比[87]
Fig. 7. Film properties and component studies: (a) Photographs, (b) XRD spectra, (c) nuclear magnetic resonance spectra of the Cs0.7DMA0.3PbI3 films and DMAI polycrystalline powder synthesized from DMF and HI[87].
-
[1] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676Google Scholar
[2] Kaelin M, Rudmann D, Tiwari A 2004 Sol. Energy 77 749Google Scholar
[3] Wang M, Chamberland N, Breau L, Moser J E, HumphryBaker R, Marsan B, Zakeeruddin S M, Grätzel M 2010 Nat. Chem. 2 385Google Scholar
[4] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[6] The National Renewable Energy Laboratory http://www.nrel.gov/ [2019-03-10]
[7] Burschka J, Pellet N, Moon S J, HumphryBaker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[8] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[9] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[10] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087Google Scholar
[11] Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B, Su G 2016 Sci. Rep. 6 18922Google Scholar
[12] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E 2015 Adv. Energy Mater. 5 1500477Google Scholar
[13] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[14] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[15] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar
[16] Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T 2013 Appl. Phys. Lett. 103 183906Google Scholar
[17] 张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar
Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar
[18] TurrenCruz S H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar
[19] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[20] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar
[21] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar
[22] Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y 2018 J. Am. Chem. Soc. 140 11716Google Scholar
[23] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar
[24] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar
[25] Xue J, Lee J W, Dai Z, Wang R, Nuryyeva S, Liao M E, Chang S Y, Meng L, Meng D, Sun P 2018 Joule 2 1866Google Scholar
[26] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, Chen Q, Zhou H 2017 Small 13 1700484Google Scholar
[27] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar
[28] Wang S, Jiang Y, JuarezPerez E J, Ono L K, Qi Y 2017 Nat. Energy 2 16195Google Scholar
[29] Raga S R, Jung M C, Lee M V, Leyden M R, Kato Y, Qi Y 2015 Chem. Mat. 27 1597Google Scholar
[30] Li Y, Xu X, Wang C, Ecker B, Yang J, Huang J, Gao Y 2017 J. Phys. Chem. C 121 3904Google Scholar
[31] Philippe B, Jacobsson T J, CorreaBaena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M 2017 J. Phys. Chem. C 121 26655Google Scholar
[32] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S 2015 Science 350 1222Google Scholar
[33] Xie H, Liu X, Lyu L, Niu D, Wang Q, Huang J, Gao Y 2016 J. Phys. Chem. C 120 215
[34] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Sadhanala A, Li W 2015 Nat. Commun. 6 10030Google Scholar
[35] Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q 2017 Adv. Mater. 29 1606774Google Scholar
[36] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L 2019 Science 363 265Google Scholar
[37] Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530Google Scholar
[38] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar
[39] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar
[40] Chen J, Wang Y, Gan L, He Y, Li H, Zhai T 2017 Angew. Chem. Int. Edit. 56 14893Google Scholar
[41] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P 2015 Science 349 1518Google Scholar
[42] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mat. 28 2852Google Scholar
[43] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S 2017 Energy Environ. Sci. 10 2095Google Scholar
[44] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. 126 11414Google Scholar
[45] Grancini G, RoldánCarmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Graetzel M 2017 Nat. Commun. 8 15684Google Scholar
[46] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y 2018 Adv. Mater. 30 1805323Google Scholar
[47] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar
[48] Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 2016 Nat. Energy 1 15016Google Scholar
[49] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[50] Yan Y, Yin WJ, Shi T, Meng W, Feng C 2016 Organic-Inorganic Halide Perovskite Photovoltaics (Switzerland: Springer) pp79-105
[51] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar
[52] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mat. 27 4405Google Scholar
[53] Park B W, Seok S I 2019 Adv. Mater. 31 1805337Google Scholar
[54] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar
Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar
[55] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar
[56] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar
[57] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar
[58] Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K 2019 Joule 3
[59] Lee J W, Yu H, Lee K, Bae S, Kim J, Han G R, Hwang D, Kim S K, Jang J 2019 J. Am. Chem. Soc. 141 5808Google Scholar
[60] Ohmann R, Ono L K, Kim H S, Lin H, Lee M V, Li Y, Park N G, Qi Y 2015 J. Am. Chem. Soc. 137 16049Google Scholar
[61] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J, Cheng Y B 2017 Nat. Commun. 8 14547Google Scholar
[62] Liu Y T, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V, Jesse S, Retterer S T, Belianiov A, Xiao K, Huang J S, Sumpter B G, Kalinin S V, Hu B, Ovchinnikova O S 2018 Nat. Mater. 17 1013Google Scholar
[63] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A 2016 Energy Environ. Sci. 9 1752Google Scholar
[64] Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar
[65] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[66] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Nat. Energy 2 17102Google Scholar
[67] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 J. Am. Chem. Soc. 141 5781Google Scholar
[68] Tan H, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[69] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar
[70] Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar
[71] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photon. 13 460Google Scholar
[72] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar
[73] Eames C, Frost J M, Barnes P R, O’regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[74] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[75] van Reenen S, Kemerink M, Snaith H J 2015 J. Phys. Chem. Lett. 6 3808Google Scholar
[76] Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M 2018 Adv. Mater. 30 1800544Google Scholar
[77] Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S 2017 Energy Environ. Sci. 10 1234Google Scholar
[78] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[79] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, de Marco N, Zhao H, Sun P, Huang Y 2018 Nat. Commun. 9 3021Google Scholar
[80] Goldschmidt V, Videnskaps-Akad S, Oslo I 1926 Mat. Nat. Kl8
[81] Li Z, Yang M, Park J S, Wei S H, Berry J J, Zhu K 2016 Chem. Mat. 28 284
[82] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar
[83] Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373Google Scholar
[84] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, de Villers B J T, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar
[85] CorreaBaena J P, Luo Y, Brenner T M, Snaider J, Sun S, Li X, Jensen M A, Hartono N T P, Nienhaus L, Wieghold S 2019 Science 363 627Google Scholar
[86] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc. 140 3825Google Scholar
[87] Ke W, Spanopoulos I, Stoumpos C C, Kanatzidis M G 2018 Nat. Commun. 9 4785
计量
- 文章访问数: 19456
- PDF下载量: 498
- 被引次数: 0