搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肖特基钙钛矿太阳电池结构设计与优化

梁晓娟 曹宇 蔡宏琨 苏健 倪牮 李娟 张建军

引用本文:
Citation:

肖特基钙钛矿太阳电池结构设计与优化

梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军

Simulation and architectural design for Schottky structure perovskite solar cells

Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun
PDF
HTML
导出引用
  • 有机-无机杂化钙钛矿材料有高吸收系数、低廉的制作成本以及较为简单的制备工艺, 在近年来表现出良好的发展前景. 本文采用wx-AMPS模拟软件对平面结构钙钛矿太阳电池和肖特基钙钛矿太阳电池进行建模仿真对比, 从理论上分析无载流子传输层的肖特基钙钛矿太阳电池的优势. 结果显示, 器件两侧电极功函数和吸收层的能带分布是提高太阳电池效率的关键. 在对电极使用Au(功函数为5.1 eV)的前提下, 透明导电电极功函数为3.8 eV, 可以得到肖特基钙钛矿太阳电池转换效率为17.93%. 对器件模型吸收层进行优化, 通过寻找合适的掺杂浓度, 抑制缺陷密度, 确定合适的厚度, 可以获得理想的转换效率(20.01%), 是平面异质结结构(理论转换效率31%)的63.84%. 肖特基钙钛矿太阳电池在简单的器件结构下可以获得优异的光电性能, 具有较好的应用潜力.
    The wx-AMPS simulation software is used to model and simulate the Schottky perovskite thin film solar cells. The front and back electrodes with different work functions are applied to the Schottky perovskite solar cells to study the effect of band structure on the performance of solar cells. The results show that in a range from 3.8 to 4.4 eV, as the work function of the front electrode decreases, the conversion efficiency of the Schottky solar cells gradually increases. When the work function of the front electrode is low, the electric field strength is large, which facilitates the transport of carriers in the light-absorbing layer of the perovskite and reduces the carrier recombination rate of the perovskite layer. In addition, the recombination ratio of the light absorbing layer is reduced due to the increase of the electric field strength, and the parallel resistance is increased to a certain extent thereby increasing the FF and improving the output efficiency of the battery. At the same time, when the current electrode work function is maintained at 3.8 eV, in a range from 4.3 to 5.5 eV, the higher the work function of the back electrode, the greater the conversion efficiency of the Schottky solar cell is. This conduces to the band alignment in contact between perovskite and back electrode. Under the premise that the common electrode Au is used as a back electrode, the work function of the front electrode is 3.8 eV and the conversion efficiency of the Schottky perovskite solar cell is 17.93%. In addition, by using the optimized front and rear contact electrodes, the quality of the perovskite layer material, thus the performance of the solar cell can be further improved. Doping till a certain concentration and removing the defects of the perovskite layer, the conversion efficiency of the solar cell with a thickness of 500 nm can be increased from 17.93% to 20.1%. The simulation results show that the Schottky perovskite thin film solar cells can obtain excellent performance with simple device structure and have great potential applications.
      通信作者: 蔡宏琨, caihongkun@nankai.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61974074)
      Corresponding author: Cai Hong-Kun, caihongkun@nankai.edu.cn
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Hodes G 2013 Science 342 317Google Scholar

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295Google Scholar

    [5]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [6]

    Sun X, Zhang C F, Chang J J, Yang H F, Xi H, Lu G, Chen D Z, Lin Z H, Lu X L, Zhang J C, Hao Y 2016 Nano Energy 28 417Google Scholar

    [7]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [8]

    Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf

    [9]

    Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B 2018 Adv. Mater. 30 1703737Google Scholar

    [10]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [11]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [12]

    Chen Z, Wang J J, Ren YH, Yu C L, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [13]

    Piliego C, Protesescu L, Bisri S Z, Kovalenko M V, Loi M A 2013 Energy Environ. Sci. 6 3054Google Scholar

    [14]

    Yang S J, Kim M, Ko H, Sin D H, Sung J H, Mun J, Rho J, Jo M H, Cho K 2018 Adv. Funct. Mater. 28 1804067Google Scholar

    [15]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Small 14 1704443Google Scholar

    [16]

    吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义 2019 物理学报 68 078801Google Scholar

    Wu B J, Lin D X, Li Z, Cheng Z P, Li X, Chen K, Shi T T, Xie W G, Liu P Y 2019 Acta Phys. Sin. 68 078801Google Scholar

    [17]

    Burgelman M, Verschraegen J, Degrave S, Nollet P 2004 Pro. Photovoltaics 12 143Google Scholar

    [18]

    Liu Y M, Sun Y, Rockett A 2012 Sol. EnergyMater. Sol. Cells 98 124Google Scholar

    [19]

    Yan B, Yang J, Yue G, Lord K, Guha S 2003 Proceedings of 3 rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 pp11–18

    [20]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [21]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [22]

    Liu W Q, Zhang Y 2014 J. Mater. Chem. A2 10244

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Fonash S 2010 Solar Cell Device Physics (2nd Ed.) (New York: Academic) pp1–602

    [26]

    Su J, Cai H K, Ye X F, Zhou X J, Yang J T, Wang D, Ni J, Li J, Zhang J J 2019 ACS Appl. Mater. Interfaces 11 10689Google Scholar

    [27]

    Zhou H P, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [28]

    Zhou Y H, Fuentes-Hrnandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [29]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [30]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 物理学报 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lv S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [31]

    Zheng H, Dai S Y, Zhou K X, Liu G Z, Zhang B, Alsaedi A, Hayat T, Pan X 2019 Sci. Mater. 62 508

    [32]

    刘国震, 叶加久, 侯昭升, 陈双宏, 胡林华, 潘旭, 戴松元 2018 高等学校化学学报 39 545Google Scholar

    Liu G Z, Ye J J, Hou Z S, Chen S H, Hu L H, Pan X, Dai S Y 2018 Chem. J. Chin. Univ. 39 545Google Scholar

  • 图 1  器件结构模型及能带示意图 (a), (b)平面异质结结构; (c), (d)肖特基结构

    Fig. 1.  Schematic and energy-level diagram of each functional layers of solar cells: (a), (b) planar heterojunction solar cell structure; (c), (d) schottky solar cell structure.

    图 2  平面异质结结构及其衍生的肖特基结构钙钛矿太阳电池的J-V曲线

    Fig. 2.  J-V characteristics of pin solar cell structure and Schottky solar cell structure.

    图 3  能带图和光生电子和空穴传输示意图 (a)平面异质结结构; (b)肖特基结构

    Fig. 3.  Energy band diagram and schematic diagram of photogenerated electron and hole transport: (a) Pin solar cell structure; (b) Schottky solar cell structure.

    图 4  不同透明导电电极肖特基太阳电池的输出性能 (a) 能带图; (b) 载流子复合率分布; (c) 电场分布能带图; (d) 自由电子密度; (e) 量子效率; (f) J-V特性

    Fig. 4.  Schottky solar cells with different front electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.

    图 5  不同对电极肖特基太阳电池的输出性能 (a) 能带图; (b) 载流子复合率分布; (c) 电场分布能带图; (d) 自由电子密度; (e) 量子效率; (f) J-V特性

    Fig. 5.  Schottky solar cells with different back electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.

    图 6  不同受主掺杂浓度下太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Fig. 6.  Output trends under different acceptor doping concentration: (a) Voc and Jsc; (b) FF and PCE.

    图 7  不同施主掺杂浓度下太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Fig. 7.  Output trends under different donor doping concentration: (a) Voc and Jsc; (b) FF and PCE.

    图 8  有无缺陷时肖特基结构钙钛矿太阳电池的输出 (a) J-V特性; (b)量子效应曲线; (c)电子浓度; (d)空穴浓度

    Fig. 8.  Output trends under J-V characteristics of Schottky solar cells with and without defect states: (a)J-V characteristic; (b) quantum efficiency; (c) free electrons concentration distribution; (d) free holes concentration distribution.

    图 9  吸收层厚度不同太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Fig. 9.  Output trends under different thickness of absorbing layer: (a) Voc and Jsc; (b) FF and PCE.

    表 1  模型中使用的材料参数

    Table 1.  Material parameters of the Schottky solar cells.

    参数SnO2[20,21]Perovskite[20,22]Spiro-OMeTAD[23-25]
    介电常数9203
    电子亲和势/eV3.51.553
    禁带宽度/eV4.33.752.2
    厚度/nm50500250
    电子/空穴迁移率/cm2·V–1·s–120/1050/500.0002/0.0002
    受主掺杂浓度/cm–3002×1018
    施主掺杂浓度/cm–31×101600
    导带有效状态密度/cm–32.2×10182.2×10182.2×1018
    价带有效状态密度/cm–31.8×10191.8×10191.8×1019
    下载: 导出CSV

    表 2  平面异质结结构和肖特基钙钛矿太阳电池光伏性能参数

    Table 2.  Photovoltaic performance parameters of the pin solar cell structure and Schottky solar cell structure.

    结构Jsc/mA·cm–2Voc/V填充因子FF/%转换效率/%
    平面异质结
    结构
    24.381.0974.9920.01
    肖特基结构20.350.3675.935.64
    下载: 导出CSV

    表 3  不同透明导电电极材料的功函数[27,28]

    Table 3.  Work function of different front electrode materials[27,28].

    材料功函数/eV
    In2O3:F(FTO)4.6[28]
    In2O3:Sn(ITO)4.4[28]
    ITO/PEIE4.0[27]
    FTO/PEIE3.8[28]
    下载: 导出CSV

    表 4  透明导电电极功函数的不同肖特基钙钛矿太阳电池光伏性能参数

    Table 4.  Photovoltaic performance parameters of Schottky solar cells with different front electrode work function.

    功函数/eVJsc/mA·cm–2Voc/VFF/%转换效率/%
    3.824.430.8784.0017.93
    4.024.380.7883.2215.86
    4.424.210.3873.446.80
    4.624.050.1857.002.50
    下载: 导出CSV

    表 5  对电极功函数不同肖特基钙钛矿太阳电池光伏性能

    Table 5.  Photovoltaic performances of Schottky solar cells with different back electrode work function.

    功函数/eVJsc/mA·cm2Voc/VFF/%转换效率/%
    4.323.480.1451.641.73
    4.924.500.7479.6214.38
    5.024.600.8280.9816.35
    5.124.680.9080.5117.39
    5.324.790.9578.1718.58
    5.524.760.9678.1918.75
    下载: 导出CSV

    表 6  有无缺陷的肖特基钙钛矿太阳电池的光电特性

    Table 6.  Photovoltaic performance of Schottky solar cells with and without defect states.

    Jsc/mA·cm2Voc/VFF/%转换效率/%
    有缺陷20.760.9481.9716.06
    无缺陷24.380.948281.5419.22
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Hodes G 2013 Science 342 317Google Scholar

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295Google Scholar

    [5]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [6]

    Sun X, Zhang C F, Chang J J, Yang H F, Xi H, Lu G, Chen D Z, Lin Z H, Lu X L, Zhang J C, Hao Y 2016 Nano Energy 28 417Google Scholar

    [7]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [8]

    Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf

    [9]

    Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B 2018 Adv. Mater. 30 1703737Google Scholar

    [10]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [11]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [12]

    Chen Z, Wang J J, Ren YH, Yu C L, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [13]

    Piliego C, Protesescu L, Bisri S Z, Kovalenko M V, Loi M A 2013 Energy Environ. Sci. 6 3054Google Scholar

    [14]

    Yang S J, Kim M, Ko H, Sin D H, Sung J H, Mun J, Rho J, Jo M H, Cho K 2018 Adv. Funct. Mater. 28 1804067Google Scholar

    [15]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Small 14 1704443Google Scholar

    [16]

    吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义 2019 物理学报 68 078801Google Scholar

    Wu B J, Lin D X, Li Z, Cheng Z P, Li X, Chen K, Shi T T, Xie W G, Liu P Y 2019 Acta Phys. Sin. 68 078801Google Scholar

    [17]

    Burgelman M, Verschraegen J, Degrave S, Nollet P 2004 Pro. Photovoltaics 12 143Google Scholar

    [18]

    Liu Y M, Sun Y, Rockett A 2012 Sol. EnergyMater. Sol. Cells 98 124Google Scholar

    [19]

    Yan B, Yang J, Yue G, Lord K, Guha S 2003 Proceedings of 3 rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 pp11–18

    [20]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [21]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [22]

    Liu W Q, Zhang Y 2014 J. Mater. Chem. A2 10244

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Fonash S 2010 Solar Cell Device Physics (2nd Ed.) (New York: Academic) pp1–602

    [26]

    Su J, Cai H K, Ye X F, Zhou X J, Yang J T, Wang D, Ni J, Li J, Zhang J J 2019 ACS Appl. Mater. Interfaces 11 10689Google Scholar

    [27]

    Zhou H P, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [28]

    Zhou Y H, Fuentes-Hrnandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [29]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [30]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 物理学报 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lv S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [31]

    Zheng H, Dai S Y, Zhou K X, Liu G Z, Zhang B, Alsaedi A, Hayat T, Pan X 2019 Sci. Mater. 62 508

    [32]

    刘国震, 叶加久, 侯昭升, 陈双宏, 胡林华, 潘旭, 戴松元 2018 高等学校化学学报 39 545Google Scholar

    Liu G Z, Ye J J, Hou Z S, Chen S H, Hu L H, Pan X, Dai S Y 2018 Chem. J. Chin. Univ. 39 545Google Scholar

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [8] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [9] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [12] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [13] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [14] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展. 物理学报, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [15] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [16] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [19] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [20] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
计量
  • 文章访问数:  12936
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-01-13
  • 刊出日期:  2020-03-05

/

返回文章
返回