-
摩擦可调控的石墨烯作为固体润滑剂在微/纳机电系统中具有巨大的应用潜力. 本文采用导电原子力显微镜对附着在Au/SiO2/Si基底上的石墨烯进行氧化刻蚀, 比较了在不同刻蚀参数下石墨烯纳米图案的摩擦性能, 并且通过开尔文力显微镜分析了不同刻蚀参数对纳米图案氧化程度的影响. 结果表明: 施加负偏压可以在石墨烯表面制造出稳定可调的氧化点、线等纳米级图案, 氧化点的直径和氧化线的宽度都随着电压的增大而增大; 增加石墨烯的厚度可以提高纳米图案的连续性和均匀性. 摩擦力随着针尖电压的增大而增大, 这是由于电压增大了弯液面力和静电力. 利用这些加工的纳米级图案可以精确地调控石墨烯表面的摩擦大小. 通过导电原子力显微镜刻蚀技术实现石墨烯表面纳米摩擦特性的可控, 为石墨烯在微/纳米机电系统中的摩擦行为研究和具有图案表面的纳米器件的制备提供了新的思路和方法.Friction-controlled graphene has great potential as a solid lubricant in micro/nano electromechanical systems. In this work, the conductive atomic force microscope was used to conduct oxidation etching on the graphene surface to produce different nanoscale patterns. The frictional properties of graphene nanoscale patterns were compared under different etching parameters, and the degree of oxidation of the etching patterns was analyzed by Scanning Kelvin Probe Microscopy. The results indicated that the degree of graphene oxidation can be controlled by changing the tip voltage, load and thickness so that graphene forms stable, adjustable oxidation point, line and nanometer patterns on the Au/SiO2/Si substrate. The diameter of oxidation point and width of oxidation line increased with the increase of voltage. The continuity and uniformity of nanometer patterns was improved by Increasing the thickness of graphene. The friction increased with the increase of tip voltage, which was attributed to the increase of meniscus force and electrostatic force. These nanostructures can precisely regulate nano-friction of graphene surface. The realization of the processing of nanoscale patterns and the adjustment of nano-friction characteristics provides a new idea and method for the study of electrical friction behavior of graphene in micro/nano electromechanical systems and the preparation of nano-devices with patterned surfaces.
-
Keywords:
- graphene /
- nano-friction /
- oxidized lithography /
- conductive atomic force microscope
[1] Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3–10
[2] Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar
[3] Klemenz A, Pastewka L, Balakrishna S G, Caron A, Bennewitz R, Moseler M 2014 Nano Lett. 14 7145Google Scholar
[4] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[5] Cho DH, Wang L, Kim JS, Lee GH, Kim E S, Lee S, Lee S Y, Hone J, Lee C 2013 Nanoscale 5 3063Google Scholar
[6] Zeng X, Peng Y, Lang H 2017 Carbon 118 233Google Scholar
[7] Bhowmick S, Banerji A, Alpas A T 2015 Carbon 87 374Google Scholar
[8] Zhang Y, Dong M, Gueye B, Ni Z, Wang Y, Chen Y 2015 Appl. Phys. Lett. 107 011601Google Scholar
[9] Ko JH, Kwon S, Byun IS, Choi J S, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137Google Scholar
[10] Fessler G, Eren B, Gysin U, Glatzel T, Meyer E 2014 Appl. Phys. Lett. 104 041910Google Scholar
[11] Choi M S, Lee S H, Yoo W J 2011 J. Appl. Phys. 110 073305Google Scholar
[12] Masubuchi S, Arai M, Machida T 2011 Nano Lett. 11 4542Google Scholar
[13] Kurra N, Reifenberger R G, Kulkarni G U 2014 ACS Appl. Mater. Interfaces 6 6147Google Scholar
[14] Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida T 2009 Appl. Phys. Lett. 94 082107Google Scholar
[15] Byun IS, Yoon D, Choi J S, Hwang I, Lee D H, Lee M J, Kawai T, Son YW, Jia Q, Cheong H 2011 ACS Nano 5 6417Google Scholar
[16] Colangelo F, Piazza V, Coletti C, Roddaro S, Beltram F, Pingue P 2017 Nanotechnology 28 105709Google Scholar
[17] Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar
[18] Xia Z Y, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V 2013 Adv. Funct. Mater. 23 4684
[19] Avdeev V, Monyakina L, Nikol'Skaya I, Sorokina N, Semenenko K 1992 Carbon 30 819Google Scholar
[20] Sherpa S D, Levitin G, Hess D W 2012 Appl. Phys. Lett. 101 111602Google Scholar
[21] Sherpa S D, Paniagua S A, Levitin G, Marder S R, Williams M, Hess D W 2012 J. Vac. Sci. Technol., B 30 03D
[22] Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635
[23] Butt HJ, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1Google Scholar
[24] Gómez-Monivas S, Sáenz J J, Calleja M, García R 2003 Phys. Rev. Lett. 91 056101Google Scholar
[25] Park J Y, Ogletree D, Thiel P, Salmeron M 2006 Science 313 186Google Scholar
-
图 3 在相同针尖电压不同接触时间下, 点刻蚀调控石墨烯表面纳米摩擦的结果 (a)摩擦力图; (b)形貌图; (c)接触电势差图像; (d)−(f)分别对应着(a)−(c)中每一行点的摩擦力、高度和接触电势差的变化
Fig. 3. Nano-friction of graphene surface was regulated by oxidation points at a constant voltage and different contact time: (a) Friction image; (b) topography image; (c) CPD image; (d)−(f) corresponds to the changes in friction, height and CPD along each row in (a)−(c), respectively.
图 4 在相同接触时间不同针尖电压下, 点刻蚀调控石墨烯表面纳米摩擦的结果 (a)摩擦力图; (b)接触电势差图像; (d)和(c)分别对应着(a)和(b)中每一行点的摩擦力和接触电势差的变化
Fig. 4. Nano-friction of graphene surface was regulated by oxidation points at a constant contact time and different voltages: (a) Friction image; (b) CPD image; (c) and (d) correspond to the changes in friction and CPD along each row in (a) and (b), respectively.
图 5 在相同刻蚀载荷不同针尖电压下, 线刻蚀调控石墨烯纳米摩擦 (a)摩擦力图; (b)形貌图; (c)接触电势差图像; (d)−(f)分别对应着(a)−(c)中红色线的摩擦力、高度和接触电势差的变化
Fig. 5. Nano-friction of graphene surface was regulated by oxidation line at a constant load and different voltages: (a) Friction image; (b) topography image; (c) CPD image; (d)−(f) corresponds to the changes in friction, height and CPD along red line in (a)−(c), respectively.
图 6 在相同针尖电压不同刻蚀载荷下, 线刻蚀调控石墨烯纳米摩擦的结果 (a)摩擦力图; (b)形貌图; (c)和(d)分别对应着载荷为10 nN和100 nN时氧化线的摩擦力和高度的变化
Fig. 6. Nano-friction of graphene surface was regulated by oxidation line at a constant voltage and different loads: (a) Friction image; (b) topography images; (c) and (d) correspond to the change in friction and height of the oxidation line when the load is 10 nN and 100 nN, respectively.
图 7 厚石墨烯上线刻蚀调控石墨烯纳米摩擦 (a)厚石墨烯的AFM形貌图, 插画显示白线的高度轮廓; (b)和(c)分别为(a)中白色方框刻蚀后的摩擦力图和形貌图; (d)和(e)分别为每条刻蚀线的摩擦力和高度变化
Fig. 7. Nano-friction of thick graphene surface was regulated by oxidation line: (a) AFM topography image of thick graphene. The inset shows the height profile along white line. (b) and (c) are the friction and topography image of the white box in (a) after etching , respectively; (d) and (e) correspond to the change in friction and height of the oxidation line.
-
[1] Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3–10
[2] Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar
[3] Klemenz A, Pastewka L, Balakrishna S G, Caron A, Bennewitz R, Moseler M 2014 Nano Lett. 14 7145Google Scholar
[4] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[5] Cho DH, Wang L, Kim JS, Lee GH, Kim E S, Lee S, Lee S Y, Hone J, Lee C 2013 Nanoscale 5 3063Google Scholar
[6] Zeng X, Peng Y, Lang H 2017 Carbon 118 233Google Scholar
[7] Bhowmick S, Banerji A, Alpas A T 2015 Carbon 87 374Google Scholar
[8] Zhang Y, Dong M, Gueye B, Ni Z, Wang Y, Chen Y 2015 Appl. Phys. Lett. 107 011601Google Scholar
[9] Ko JH, Kwon S, Byun IS, Choi J S, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137Google Scholar
[10] Fessler G, Eren B, Gysin U, Glatzel T, Meyer E 2014 Appl. Phys. Lett. 104 041910Google Scholar
[11] Choi M S, Lee S H, Yoo W J 2011 J. Appl. Phys. 110 073305Google Scholar
[12] Masubuchi S, Arai M, Machida T 2011 Nano Lett. 11 4542Google Scholar
[13] Kurra N, Reifenberger R G, Kulkarni G U 2014 ACS Appl. Mater. Interfaces 6 6147Google Scholar
[14] Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida T 2009 Appl. Phys. Lett. 94 082107Google Scholar
[15] Byun IS, Yoon D, Choi J S, Hwang I, Lee D H, Lee M J, Kawai T, Son YW, Jia Q, Cheong H 2011 ACS Nano 5 6417Google Scholar
[16] Colangelo F, Piazza V, Coletti C, Roddaro S, Beltram F, Pingue P 2017 Nanotechnology 28 105709Google Scholar
[17] Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar
[18] Xia Z Y, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V 2013 Adv. Funct. Mater. 23 4684
[19] Avdeev V, Monyakina L, Nikol'Skaya I, Sorokina N, Semenenko K 1992 Carbon 30 819Google Scholar
[20] Sherpa S D, Levitin G, Hess D W 2012 Appl. Phys. Lett. 101 111602Google Scholar
[21] Sherpa S D, Paniagua S A, Levitin G, Marder S R, Williams M, Hess D W 2012 J. Vac. Sci. Technol., B 30 03D
[22] Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635
[23] Butt HJ, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1Google Scholar
[24] Gómez-Monivas S, Sáenz J J, Calleja M, García R 2003 Phys. Rev. Lett. 91 056101Google Scholar
[25] Park J Y, Ogletree D, Thiel P, Salmeron M 2006 Science 313 186Google Scholar
计量
- 文章访问数: 9188
- PDF下载量: 169
- 被引次数: 0