搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋太赫兹源:性能、调控及其应用

冯正 王大承 孙松 谭为

引用本文:
Citation:

自旋太赫兹源:性能、调控及其应用

冯正, 王大承, 孙松, 谭为

Spintronic terahertz emitter: Performance, manipulation, and applications

Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei
PDF
HTML
导出引用
  • 自旋太赫兹源基于铁磁/非磁纳米薄膜异质结构中的超快自旋流-电荷流转换产生太赫兹脉冲, 具有超宽频谱、固态稳定、偏振可调、超薄结构、成本低廉等独特优点, 近年来引起很大的关注. 本文首先简要介绍太赫兹波、太赫兹自旋电子学及自旋太赫兹源; 其次从自旋太赫兹源的性能提升、调控及其应用3方面对其研究进展进行详细的综述, 分别为: 1)基于自旋太赫兹源产生太赫兹的3个过程—超快自旋输运、光学激发、太赫兹出射的性能提升方法, 2)自旋太赫兹源偏振和频谱的主动调控, 3)自旋太赫兹源在太赫兹超宽谱测试、磁结构检测及成像、太赫兹超分辨近场成像等方面的应用; 最后总结全文, 指出自旋太赫兹源目前存在的问题, 并展望其发展方向.
    Spintronic terahertz (THz) emitter, which is based on ultrafast spin-to-charge current conversion in ferromagnetic/nonmagnetic heterostructures, provides excellent advantages such as ultra-broadband, tunable polarization, and ultra-thin structure, thereby attracting increasing interests recently. In this review article, we first introduce the fundamental concepts of THz wave, THz spintronics and spintronic THz emitter. Next, we focus on the recent progress of spintronic THz emitter by closely looking at the performances, manipulations and applications. Performance improvement is presented based on the three fundamental processes: optical excitation, ultrafast spin transport, and THz emission. The active manipulation of polarization and spectral response, as well as the relevant applications such as ultra broadband measurements, magnetic structure detection and imaging, and THz near-field microscopy, are reviewed comprehensively. Finally, a brief summary and outlook are given.
      通信作者: 冯正, fengzheng@mtrc.ac.cn ; 谭为, tanwei@mtrc.ac.cn
    • 基金项目: 科学挑战专题(批准号: TZ2018003)、国家自然科学基金青年科学基金(批准号: 11504345, 11504346, 61905225, 62005256)和中国工程物理研究院创新发展基金(批准号: CX20200011)资助的课题
      Corresponding author: Feng Zheng, fengzheng@mtrc.ac.cn ; Tan Wei, tanwei@mtrc.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2018003), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11504345, 11504346, 61905225, 62005256), and the China Academy of Engineering Physics Innovation Grant (Grant No. CX20200011)
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar

    [4]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [5]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [6]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31

    [7]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [8]

    Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar

    [9]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [10]

    Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [11]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [12]

    Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar

    [13]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [14]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [15]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [18]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar

    [19]

    Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [20]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [21]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [22]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [23]

    Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001

    [24]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [25]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [26]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [27]

    Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [28]

    Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)

    [29]

    Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [30]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [31]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [32]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [33]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [34]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [35]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [36]

    Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar

    [37]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [38]

    Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [39]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [40]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [41]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [42]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [43]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [44]

    Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626

    [45]

    Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar

    [46]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608

    [47]

    Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [48]

    Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar

    [49]

    Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar

  • 图 1  自旋太赫兹源原理

    Fig. 1.  Schematic of the spintronc THz emitter.

    图 2  三层结构自旋太赫兹源

    Fig. 2.  Schematic of the trilayer spintronic THz emitter.

    图 3  基于逆Rashba-Edelstein效应的太赫兹发射 (a) Ag/Bi界面; (b) 拓扑绝缘体Bi2Se3表面态; (c)二维半导体材料MoS2

    Fig. 3.  Schematic of THz emission via inverse Rashba-Edelstein effect: (a) Ag/Bi interface; (b) surface states of topological material Bi2Se3; (c) two-dimensional semiconductor MoS2.

    图 4  金属-介质光子晶体自旋太赫兹源[34] (a)结构示意图; (b)不同周期样品的飞秒激光吸收率与太赫兹强度随介质层SiO2厚度d的变化; (c)归一化的激光吸收率与太赫兹强度

    Fig. 4.  Metal–dielectric photonic crystal type spintronic THz emitter[34]: (a) Schematic diagram; (b) fs laser absorbance and THz amplitude as the functions of SiO2 thickness d for different repeats; (c) normalized THz amplitude and fs laser absorbance as the functions of SiO2 thickness d for different repeats.

    图 5  高场强自旋太赫兹源[37] (a) 大面积自旋太赫兹源照片; (b) 实验装置示意图; (c) 太赫兹电场强度

    Fig. 5.  High-field spintronic THz emitter[37]: (a) Photograph of the large area spintronic terahertz emitter; (b) schematic of the experimental setup; (c) resulting THz electric fields.

    图 6  (a)自旋太赫兹源与超半球硅透镜组合器件[22]; (b) 自旋太赫兹源与天线结构耦合器件[39]

    Fig. 6.  (a) The integrated device of spintronic THz emitter and hyper hemispherical silicon lens[22]; (b) the integrated device of spintronic THz emitter and antenna[39].

    图 7  偏振可调自旋太赫兹源 (a)级联自旋太赫兹源[42]; (b)超材料集成自旋太赫兹源[44]

    Fig. 7.  Polarization-tunable spintronic THz emitter: (a) Cascade spintronic THz emitter[42]; (b) metamaterial integrated spintronic THz emitter[44].

    图 8  频谱可调自旋太赫兹源 (a)条带图形自旋太赫兹源[20]; (b)电流增强复合自旋太赫兹源[46]; (c)飞秒激光脉冲对激发自旋太赫兹源[47]

    Fig. 8.  Spectrum-tunable spintronic THz emitter: (a) Stripe patterned spintronic THz emitter[20]; (b) current enhanced hybrid spintronic THz emitter[46]; (c) dual-pulses pumped spintronic THz emitter[47].

    图 9  基于自旋太赫兹源的磁检测/成像芯片[48] (a)示意图; (b)不同永磁铁取向下的磁分布成像图

    Fig. 9.  Magneto-optic sensor/imager based on spintronic THz emitter[48]: (a) Schematic diagram; (b) magnetic images with diferent permanent magnet orientation.

    图 10  自旋太赫兹源阵列鬼成像显微术[49] (a) 示意图; (b) 自旋太赫兹源阵列; (c)成像物体的光学照片和太赫兹鬼成像图

    Fig. 10.  Ghost spintronic THz emitter array microscope(GHOSTEAM)[49]: (a) Schematic of GHOSTEAM; (b) schematic of spintronic THz emitter array; (c) optical photo and THz ghost image of an object.

  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar

    [4]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [5]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [6]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31

    [7]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [8]

    Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar

    [9]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [10]

    Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [11]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [12]

    Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar

    [13]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [14]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [15]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [18]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar

    [19]

    Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [20]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [21]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [22]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [23]

    Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001

    [24]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [25]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [26]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [27]

    Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [28]

    Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)

    [29]

    Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [30]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [31]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [32]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [33]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [34]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [35]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [36]

    Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar

    [37]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [38]

    Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [39]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [40]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [41]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [42]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [43]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [44]

    Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626

    [45]

    Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar

    [46]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608

    [47]

    Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [48]

    Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar

    [49]

    Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [4] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 杜梦瑶, 邱志勇. Ni/Pt异质结界面的自旋阻塞效应. 物理学报, 2023, 72(5): 057501. doi: 10.7498/aps.72.20222288
    [7] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [8] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [9] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [10] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [11] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [12] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [13] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [14] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [15] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [17] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [19] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [20] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
计量
  • 文章访问数:  13392
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-05-27
  • 上网日期:  2020-10-19
  • 刊出日期:  2020-10-20

/

返回文章
返回