Loading web-font TeX/Math/Italic

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带隙钙钛矿材料及太阳电池的研究进展

崔兴华 许巧静 石标 侯福华 赵颖 张晓丹

Liu Xian, Ma Bai-Wang, Liu Hui-Jun. Performance of closed-loop control of epileptiform spikes in neural mass models. Acta Phys. Sin., 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
Citation: Liu Xian, Ma Bai-Wang, Liu Hui-Jun. Performance of closed-loop control of epileptiform spikes in neural mass models. Acta Phys. Sin., 2013, 62(2): 020202. doi: 10.7498/aps.62.020202

宽带隙钙钛矿材料及太阳电池的研究进展

崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹

Research progress of wide bandgap perovskite materials and solar cells

Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 金属卤化物钙钛矿太阳电池在近几年获得了巨大进展. 目前单结钙钛矿太阳电池转化效率已经达到25.2%. 经过带隙调整得到的1.63 eV及以上的宽带隙钙钛矿太阳电池是制备多结叠层太阳电池中顶部吸收层的最佳材料. 除高效叠层太阳电池外, 宽带隙钙钛矿在光伏建筑一体化以及光解水制氢等领域中也有着广阔的应用前景. 然而这种钙钛矿薄膜本身缺陷较多, 在光照下还容易发生卤素分离, 这也是限制宽带隙钙钛矿太阳电池发展的关键因素. 本文综述了目前宽带隙钙钛矿及太阳电池的发展现状, 最后对其未来发展前景进行了展望.
    Organic-inorganic metal halide perovskites are a new type of photovoltaic material, they have attracted wide attention and made excellent progress in recent years. The power conversion efficiency of a single-junction perovskite solar cell has been increased to 25.2% just within a decade. Meanwhile, crystalline silicon solar cells account for nearly 90% of industrialized solar cells and have a maximum efficiency of 26.7%, approaching to their theoretical limit. It is more difficult to further improve the efficiency of single junction solar cells. It has been shown that multi-junction tandem solar cells prepared by stacking absorption layers with different bandgaps can better use sunlight, which is one of the most promising strategies to break the efficiency limitation of single-junction solar cells. Due to the bandgap tunability and low-temperature solution processability, perovskites stand out among many other materials for manufacturing multi-junction tandem solar cells. Wide bandgap perovskites with a bandgap of 1.63 eV or above have been combined with narrow band gap inorganic absorption layers such as silicon, copper indium gallium selenide, cadmium telluride or narrow bandgap perovskite to produce high efficiency tandem solar cells. In addition to the promoting of the efficiency improvement of solar cells, the wide bandgap perovskites have broad applications in photovoltaic building integration and photocatalytic fields. Therefore, it is very important to explore and develop high quality wide bandgap perovskite materials and solar cells. Unfortunately, the wide bandgap perovskites have several intrinsic weaknesses, including being more vulnerable to the migration of halogen ions under being illuminated, more defects, and greater possibility of energy level mismatching with the charge transport layers than the narrow bandgap counterparts, which limits the further development of the wide bandgap perovskite solar cells. In this review, the development status of wide bandgap perovskite solar cells is summarized and corresponding strategies for improving their performance are put forward. Furthermore, some personal views on the future development of wide bandgap perovskite solar cells are also presented here in this paper.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500103)、国家自然科学基金(批准号: 61674084)、高等学校学科创新引智计划(111 计划) (批准号: B16027)、天津市科技项目(批准号: 18ZXJMTG00220)和中央高校基本科研业务费(批准号: 63201171)资助的课题
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Fund for the Central Universities, China (Grant No. 63201171)

    金属卤化物钙钛矿是近年来光电材料领域特别是太阳电池中最重要的科学发现之一. 凭借其优异的光电性质(较高吸收系数、长载流子寿命、长扩散长度和灵活可调的禁带宽度)以及较高的缺陷容忍度和简单的制备工艺, 吸引了全世界来自化学、物理、材料和信息等多个学科的科学家对其进行探索, 并展示了其在能源、信息技术等光电领域中的应用前景[1-3]. 目前钙钛矿太阳电池(perovskite solar cells, PSCs)的光电转换效率(PCE)在10年之内从3.8%飙升到25.2%, 作为新一代太阳电池发展潜力巨大[4]. 除了创纪录的25.2%以外, 多个研究团队也已经实现了相当高的效率[5-12].

    虽然目前单结PSCs已取得了前所未有的发展, 但随着其效率逐渐接近肖克利-奎伊瑟(Shock-ley-Queisser)极限, 进一步的提升将会变得困难[13]. 理论计算已经表明: 在多结叠层结构中叠加不同带隙的吸收层, 更加充分地利用太阳光谱是最有希望突破单结太阳电池效率限制的策略[14]. 钙钛矿材料灵活可调的禁带宽度(1.2—2.5 eV)以及简单低温溶液制备工艺使其成为制造多结叠层太阳电池(tandem solar cells, TSCs)的理想候选材料[15-21]. 目前, 宽带隙(Eg > 1.63 eV)钙钛矿已与窄带隙的无机吸收层比如硅(Si)、铜铟镓硒(CIGS)、碲化镉(CdTe)或者窄带隙钙钛矿等相结合, 制备出了一定效率的TSCs[22-25].

    就目前基于钙钛矿叠层太阳电池所取得成果来看, Al-Ashouri等[26]使用钙钛矿/CIGS两端TSCs(1 cm2)获得了23.26%的功率转换效率; 几乎在相同时间段内, Kim等[27]使用钙钛矿/CIGS四端串联太阳电池(0.06 cm2)获得了25.9%的功率转换效率. 至于全钙钛矿串联太阳电池, Lin等[28]基于钙钛矿/钙钛矿两端TSCs(0.049 cm2)创下了效率为24.8%的记录; 而McMeekin等[29]基于三结的器件结构(0.0919 cm2)获得开路电压为2.83 V的TSCs, 且通过光学和电学建模, 预估这种先进的三结器件结构有望实现26.7%的PCE. 尤为值得一提的是, 2020年初, 由美国国家可再生能源实验室(NREL)发布, 德国海姆霍兹柏林材料所(HZB)研发出了效率为29.15%的钙钛矿/硅两端TSCs(1.06 cm2), 打破了之前由牛津光伏创造的28%的记录, 使得光电转换效率超过30%的可能性进一步提高[25].

    随着钙钛矿带隙的拓宽, 实现不同程度透明度的薄膜也成为可能, 电池的颜色也可由红棕色变为黄色, 这使得宽带隙PSCs在光伏建筑一体化(BIPV)方面具有不可比拟的优势. 尽管目前国内BIPV市场大多还是晶硅电池的天下, 主要原因是其价格便宜和稳定性好, 但其在透明应用的市场方面还存在一定的局限性. 而薄膜型的PSCs不仅质量轻、柔韧性好、弱光性好, 颜色也多变, 更有利于与建筑物融为一体, 有望成为高楼大厦幕墙装饰、车辆有色玻璃贴膜等的替代品[30-32].

    此外, 受太阳电池的启发, 钙钛矿材料也在光电催化领域表现出良好的发展潜力. 特别是将具有高开路电压(VOC)的宽带隙钙钛矿太阳电池(WBG-PSCs)或TSCs应用于光电水解制氢和二氧化碳还原等领域[33,34].

    综上所述, 宽带隙钙钛矿材料及太阳电池的研究具有非常重要的研究意义. 探索和开发高质量的宽带隙钙钛矿材料及太阳电池是十分重要的. 本文主要概述了近年来典型的宽带隙钙钛矿及太阳电池的研究进展, 重点阐述了它们所面临的主要问题, 总结并提出了一些提高WBG-PSCs性能的策略, 最后对它未来的发展做出展望. 图1是带隙1.63 eV及以上且效率高于15%的PSCs性能的统计, 并在表1中列出了相应的详细性能参数.

    图 1 宽带隙钙钛矿太阳电池性能统计图(Eg ≥ 1.63 eV, PCE > 15%) (a) VOC与Eg之间的关系, 红色阴影部分表示的是qVOC与Eg的比值小于0.75, 其中q表示单位电荷量; (b) PCE和Eg之间的关系\r\nFig. 1. Performance statistics of WBG-PSCs (Eg ≥ 1.63 eV, PCE > 15%): (a) Relationship between VOC and Eg. The red shaded part indicates that the ratio between qVOC and Eg is less than 0.75, where q represents the unit charge; (b) relationship between PCE and Eg.
    图 1  宽带隙钙钛矿太阳电池性能统计图(Eg ≥ 1.63 eV, PCE > 15%) (a) VOCEg之间的关系, 红色阴影部分表示的是qVOCEg的比值小于0.75, 其中q表示单位电荷量; (b) PCE和Eg之间的关系
    Fig. 1.  Performance statistics of WBG-PSCs (Eg ≥ 1.63 eV, PCE > 15%): (a) Relationship between VOC and Eg. The red shaded part indicates that the ratio between qVOC and Eg is less than 0.75, where q represents the unit charge; (b) relationship between PCE and Eg.
    表 1  宽带隙钙钛矿太阳电池性能统计(Eg ≥ 1.63 eV, PCE > 15%)
    Table 1.  WBG-PSCs performance statistics (Eg ≥ 1.63 eV and PCE > 15%).
    TypePerovskiteEg/eVVOC/VqVOC/EgJSC/mA·cm–2 FF/%PCE/%Ref.
    p-i-nMAPbI2.5Br0.51.721.0600.6118.3078.216.60 [35]
    p-i-n(FA0.83MA0.17)0.95Cs0.05Pb(I0.6Br0.4)31.711.2100.7119.7077.518.50 [36]
    p-i-nFA0.6Cs0.4Pb(I0.7Br0.3)31.751.1700.6717.5080.016.30 [37]
    p-i-nFA0.83MA0.17Pb(I0.6Br0.4)31.721.1500.6719.4077.017.20 [38]
    p-i-nFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2400.7117.9281.918.19 [39]
    p-i-n(FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)31.681.1700.7021.2079.819.50 [27]
    p-i-nCs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.1900.7319.5080.218.60[40]
    p-i-nCsPbI31.731.1600.6717.7078.616.10[41]
    p-i-nCsPbI2Br1.801.2300.6715.2678.015.19[42]
    p-i-nFA0.6Cs0.3DMA0.1PbI2.4Br0.61.701.2000.7019.6082.019.40 [43]
    p-i-nFA0.75Cs0.25Pb(I0.8Br0.2)31.681.2170.7220.1883.620.42[44]
    p-i-n(FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.671.2000.72NANA20.70[45]
    p-i-n(FA0.64MA0.20Cs0.15)Pb0.99(I0.79Br0.2)31.681.1960.7121.6581.521.00[46]
    n-i-pRb0.05(FA0.75MA0.15Cs0.1)0.95PbI2Br1.731.1200.7119.4073.015.90 [47]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.1600.6618.2778.516.28 [48]
    n-i-pFA0.85Cs0.15Pb(I0.73Br0.27)31.721.2400.7219.8373.718.13 [49]
    n-i-pFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2500.7118.5379.018.27 [50]
    n-i-pMAPb(Br0.2I0.8)31.721.1200.6517.3082.315.90 [51]
    n-i-pK0.1(Cs0.06FA0.79MA0.15)0.9Pb(I0.4Br0.6)31.781.2300.6917.9079.017.50 [52]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.2300.7018.3479.017.80 [53]
    n-i-pCs0.17FA0.83PbI2.2Br0.81.721.2700.7419.3077.418.60 [54]
    n-i-pCs0.12MA0.05FA0.83Pb(I0.6Br0.4)31.741.2500.7219.0081.519.10 [55]
    n-i-pRb5(Cs5MAFA)95Pb(I0.83Br0.17)31.631.2400.7622.8081.021.60 [56]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.741.2000.7019.4075.117.00 [57]
    n-i-pFA0.17Cs0.83PbI2.2Br0.81.721.2440.7219.8075.018.60 [51]
    n-i-pCs0.2FA0.8Pb(I0.75Br0.25)31.651.2200.7421.2080.520.70 [55]
    n-i-pBA0.09(FA0.83 Cs0.17)0.91Pb(I0.6Br0.4)31.721.1800.6919.8073.017.30 [38]
    n-i-pFA0.15Cs0.85Pb(I0.73Br0.27)31.721.2400.7219.8373.718.10 [58]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)3 1.721.3100.7619.3078.019.50 [59]
    n-i-pRb0.05Cs0.095 MA0.1425 FA0.7125PbI2Br1.721.2050.7018.0078.917.10 [54]
    n-i-pCsPbI31.731.0800.6218.4179.3215.71 [60]
    n-i-pCsPbI2Br1.801.2300.6816.7977.8116.07 [61]
    n-i-pβ-CsPbI31.681.1100.6620.2382.018.40 [62]
    n-i-pCsPbI3-xBrx1.771.2340.6918.3082.518.64 [63]
    n-i-pCsPbI2Br1.801.2700.7115.4079.015.50 [64]
    注: NA表示文献中没有给出具体数值; FF表示填充因子.
    下载: 导出CSV 
    | 显示表格

    ABX3型钙钛矿晶体结构中, 金属阳离子(B2+)和卤化物阴离子(X)构成以B为核心, 以X为顶点的BX6八面体结构, 而单价阳离子(A+)位于八面体晶体核内(图2(a))[65,66]. 通常, 我们根据施密特容差因子t来预测钙钛矿晶格能否形成稳定立方结构, , 其中RA, RB, RX为相应离子的半径(A一般为甲胺离子(MA+)、甲脒离子(FA+)或铯离子(Cs+)、铷离子(Rb+)等一价阳离子; B一般为金属铅离子(Pb2+)或锡离子(Sn2+)等金属离子; X一般为卤素离子中的碘离子(I)、溴离子(Br)或氯离子(Cl)). 为了得到稳定的钙钛矿晶格, t的值需要在0.81—1.10之间, 否则八面体将逐渐倾斜, 形成扭曲的立方结构(图2(b)), 所以A, B, X离子半径的不同将直接影响最终的钙钛矿晶体结构及其材料性质, 表2中总结了钙钛矿常用元素的有效离子半径[67]. 从钙钛矿的能带结构来看, 其导带的最小值和价带的最大值分别主要来源于B-p轨道和B-s轨道, 而X离子与B离子又构成钙钛矿晶体结构的八面体框架. 研究证明, BX的键角和键长对于钙钛矿带隙有重要影响[68]. 通常, 将钙钛矿中的Pb逐步替换为Sn会导致BX键角增加, 伴随的是禁带宽度的减小, 这样可以将钙钛矿材料的吸收光谱拓展到近红外区域[69]. 而卤素离子的大小也会直接影响钙钛矿带隙, 这是因为BX的键长会随着X离子半径的减小而减小, 导致X离子与B离子之间作用力增强, 从而使得钙钛矿在长波区域的吸收能力减弱, 也就是带隙被拓宽. 因此通过调控I, Br和Cl的掺杂比例, 可以成功实现对钙钛矿材料吸收光谱的连续性调整[70-72]. 当然, A位阳离子也会影响钙钛矿的带隙, 因为不同半径的单价阳离子在八面体空间内的转动会导致钙钛矿晶格的收缩或膨胀, 从而改变BX键长和键角.

    图 2 (a)钙钛矿结构; (b)不同钙钛矿所对应的容差因子图以及相应的晶体结构[67]\r\nFig. 2. (a) Structure of perovskite; (b) corresponding tolerance factor and crystal structure of different perovskites[67].
    图 2  (a)钙钛矿结构; (b)不同钙钛矿所对应的容差因子图以及相应的晶体结构[67]
    Fig. 2.  (a) Structure of perovskite; (b) corresponding tolerance factor and crystal structure of different perovskites[67].
    表 2  钙钛矿中常用离子有效半径[56,72]
    Table 2.  Effective radius of commonly used ions in perovskite[56,72].
    序号钙钛矿中常用离子有效半径R/pm
    1胍离子(GA+)278
    2二甲胺离子(DMA+)272
    3甲脒离子(FA+)253
    4甲胺离子(MA+)217
    5铯离子(Cs+)167
    6铷离子(Rb+)152
    7钾离子(K+)138
    8钠离子(Na+)102
    9铅离子(Pb2+)119
    10锡离子(Sn2+)112
    11碘离子(I)220
    12溴离子(Br)196
    13氯离子(Cl)181
    下载: 导出CSV 
    | 显示表格

    本文中的宽带隙指的是带隙在1.63 eV及以上的钙钛矿. 正如前面所讨论的, 溴的离子半径小于碘的离子半径, 所以通常是在碘基钙钛矿中用部分溴取代碘来实现钙钛矿带隙的拓宽, 溴的含量越多, 带隙也越宽. 氯离子半径虽然比溴离子半径还小. 但是, 有研究表明, 由于氯和碘巨大的离子半径差异, 氯可被纳入纯碘基钙钛矿晶格的最大含量被限制在3%以下(氯相对于碘)[73,74]. 很多研究团队认为氯只改变钙钛矿晶体生长的动力学过程, 影响最终形成的钙钛矿薄膜形貌和结晶取向, 使得钙钛矿的电学特性发生显著的变化, 而对光学带隙几乎没有影响[5,40,75,76]. 因此目前用卤素置换来改变钙钛矿带隙主要是依靠碘和溴不同比例的调节.

    2013年, Noh等[70]首次报道了MAPb(BrxI1–x)3系列不同带隙和不同颜色的钙钛矿薄膜, 其中带隙(Eg)随溴含量的变化如图3(a)所示, 这种非线性变化可以近似用公式Eg (eV) = 1.57 + 0.39x + 0.33x2来描述. 这种离子交换实现了MAPb(BrxI1–x)3在1.55—2.3 eV之间的带隙调整, 使其成为叠层电池应用的最佳候选者. 此外, 不同带隙的钙钛矿薄膜可以制备彩色PSCs, 也为BIPV提供了理想选择. 在这之后, Eperon等[71]首次提出用FA+取代MA+, 合成了FAPb(Br1–yIy)3系列钙钛矿, 其带隙可调范围为1.48—2.23 eV(图3(b)).

    图 3 (a) MAPb(BrxI1–x)3的紫外可见吸收光谱、不同颜色钙钛矿薄膜照片以及带隙随Br含量变化的函数图[70]; (b) FAPb(Br1–yIy)3的紫外可见吸收光谱和光致发光(PL)光谱[71]; (c) CsPb(BrzI1–z)3的钙钛矿溶液和对应的光致发光(PL)谱[79]\r\nFig. 3. (a) UV-visible absorption spectra, photos of perovskite films with different colors, as well as functional graph between bandgap and bromine content of MAPb(BrxI1–x)3[70]; (b) UV-visible absorption spectra and photoluminescence (PL) spectra of FAPb(Br1–yIy)3[71]; (c) photos of CsPb(BrzI1–z)3 solutions and corresponding PL spectra[79].
    图 3  (a) MAPb(BrxI1–x)3的紫外可见吸收光谱、不同颜色钙钛矿薄膜照片以及带隙随Br含量变化的函数图[70]; (b) FAPb(Br1–yIy)3的紫外可见吸收光谱和光致发光(PL)光谱[71]; (c) CsPb(BrzI1–z)3的钙钛矿溶液和对应的光致发光(PL)谱[79]
    Fig. 3.  (a) UV-visible absorption spectra, photos of perovskite films with different colors, as well as functional graph between bandgap and bromine content of MAPb(BrxI1–x)3[70]; (b) UV-visible absorption spectra and photoluminescence (PL) spectra of FAPb(Br1–yIy)3[71]; (c) photos of CsPb(BrzI1–z)3 solutions and corresponding PL spectra[79].

    与有机-无机杂化钙钛矿相比, 全无机钙钛矿具有优异的热稳定性, 是近三年来钙钛矿光电领域最具吸引力的研究热点之一[77,78]. CsPb(BrzI1–z)3系列钙钛矿的带隙可调范围为1.72—3.06 eV (图3(c)), 这类钙钛矿不含受热易分解的有机组分, 可以在400 ℃高温下依然保持组分和晶体结构的稳定性, 有望根本解决PSCs的热稳定性问题. 其中CsPbI3具备作为TSCs顶部吸收层的最佳带隙(1.72 eV), 而CsPbBr3钙钛矿薄膜几乎可以完全滤过太阳光中的紫外光, 且在可见光区域具有高透过率, 可以有效避免紫外光对底层电池的辐射, 提高太阳电池的光稳定性[79,80]. 需要指出的是, 尽管目前全无机PSCs的性能相对于有机-无机杂化钙钛矿来说还比较低, 但这是一个相对较新的领域, 它对提高钙钛矿光伏器件的稳定性具有非常重要的研究意义.

    表1中可看出, 目前WBG-PSCs已经取得了很大进展, 但是与窄带隙的PSCs相比, VOC损失依然很大(> 550 mV), qVOCEg比值通常远小于0.75, 主要是因为WBG-PSCs受到载流子扩散长度短、光诱导的相分离, 以及与电荷传输层能级不匹配等影响, 导致了它们严重的开压损失, 光电特性也与理论值有较大差距[81-84].

    通常AB(I1–xBrx)3薄膜, 特别是当x大于0.2时, 很容易在光照下发生卤化物偏析, 导致碘化物相的形成, 其带隙比周围未偏析的材料要小(图4(a). Hoke等[85]最先通过光致发光(PL)谱和X射线衍射(XRD)图谱观察到了这一现象(图4(b)4(c)), 并且肯定了此光致低能量相的形成将导致钙钛矿吸收层光致发光量子产率(PLQY)的降低, 从而直接影响太阳电池的VOC以及它们在TSCs中的应用. 此外, 偏析后的钙钛矿薄膜中存在很多陷阱态, 也会影响器件的稳定性. 为了克服宽带隙混合卤化物钙钛矿中卤素偏析引起的一系列问题, 很多学者对此进行了大量研究, 试图了解其机理[86-89]. Bischak等[89]从分子动力学角度对此现象进行了解释: 在光照下, 钙钛矿中产生的弱束缚电子-空穴对会迅速解离, 产生的自由电荷通过电子-声子耦合使周围晶格发生畸变, 导致电荷和围绕它的晶格畸变场形成一个极化子, 这个极化子反过来很容易捕获碘离子, 最终形成了碘团簇. 他们认为相分离的发生离不开卤素离子的迁移和大量的电子-声子耦合, 因此抑制体系中卤素离子迁移以及降低电子-声子耦合可以显著降低光诱导相分离程度. 这就要求我们尽量制备结晶度高、缺陷态密度低、晶界数量少以及极化程度低的钙钛矿薄膜, 才有望实现高效稳定的宽带隙钙钛矿太阳电池.

    图 4 (a)卤素离子在光照下发生迁移和团簇示意图[90]; (b) MAPb(Br0.4I0.6)3在光照下的光致发光(PL)光谱, 插图表示初始PL增长率的温度依赖性[85]; (c)在约50 mW /cm2的条件下, MAPb(Br0.4I0.6)3膜在白光浸泡5 min前(黑色线)、后(红色线)的XRD图谱, 将MAPb(Br0.2I0.8)3膜(绿色虚线)和MAPb(Br0.7I0.3)3膜(棕色虚线)的XRD图谱进行比较[85]\r\nFig. 4. (a) Schematic illustration of halogen ion migration and clusters under light[90]; (b) photoluminescence (PL) spectra of MAPb(Br0.4I0.6)3 under light. The illustration shows the temperature dependence of the initial PL growth rate[85]; (c) the XRD pattern of MAPb(Br0.4I0.6)3 film before (black) and after (red) white-light soaking for 5 min at about 50 mW/cm2. XRD patterns of the MAPb(Br0.2I0.8)3 film (dashed green) and the MAPb(Br0.7I0.3)3 film (dashed brown) are included for comparison[85].
    图 4  (a)卤素离子在光照下发生迁移和团簇示意图[90]; (b) MAPb(Br0.4I0.6)3在光照下的光致发光(PL)光谱, 插图表示初始PL增长率的温度依赖性[85]; (c)在约50 mW /cm2的条件下, MAPb(Br0.4I0.6)3膜在白光浸泡5 min前(黑色线)、后(红色线)的XRD图谱, 将MAPb(Br0.2I0.8)3膜(绿色虚线)和MAPb(Br0.7I0.3)3膜(棕色虚线)的XRD图谱进行比较[85]
    Fig. 4.  (a) Schematic illustration of halogen ion migration and clusters under light[90]; (b) photoluminescence (PL) spectra of MAPb(Br0.4I0.6)3 under light. The illustration shows the temperature dependence of the initial PL growth rate[85]; (c) the XRD pattern of MAPb(Br0.4I0.6)3 film before (black) and after (red) white-light soaking for 5 min at about 50 mW/cm2. XRD patterns of the MAPb(Br0.2I0.8)3 film (dashed green) and the MAPb(Br0.7I0.3)3 film (dashed brown) are included for comparison[85].

    在钙钛矿前驱体溶液中引入特定组分添加剂是改善薄膜和器件性能的常用方法. 由于钙钛矿本身具有“软离子”特性, 这使得添加剂很容易在溶液中与钙钛矿组分离子通过离子键配位[91,92]. 这些添加剂种类多样, 包括盐类、特定分子、聚合物、纳米颗粒物等[93-96]. 在薄膜处理后期, 一些添加剂可能被去除, 而另一些添加剂则仍然留在薄膜中, 或是生长于钙钛矿晶体, 亦或是在晶粒边界, 还有可能是位于薄膜表面或界面上. 总之, 特定添加剂对钙钛矿组分调控、薄膜质量以及器件性能都可以产生一定的积极影响. 下面重点从碱金属离子、有机阳离子、卤素阴离子和路易斯特性添加剂4个方面对钙钛矿材料和电池性能影响进行一定的深入分析.

    3.1.1   碱金属离子的调控

    碱金属阳离子除了可以调整钙钛矿的容差因子(图5(a))以及对I间隙缺陷和Pb-I反位缺陷有积极的影响外, 还能够降低钙钛矿体系中电子-声子耦合程度, 从而抑制卤素分离, 增强钙钛矿太阳电池的光稳定性.

    图 5 (a) APbI3钙钛矿的容差因子[56]; (b) FACs基钙钛矿光稳定性明显提高[57]; (c) CsxFA1–xPb(BryI1–y)3材料中的带隙和VOC 变化[37]; (d) K+钝化作用示意图[52]\r\nFig. 5. (a) Tolerance factor of APbI3[56]; (b) FACs-based perovskite light stability was improved obviously[57]; (c) changes of Eg and VOC in the CsxFA1–xPb(BryI1–y)3 compositions[37]; (d) schematic of K+ passivation[52].
    图 5  (a) APbI3钙钛矿的容差因子[56]; (b) FACs基钙钛矿光稳定性明显提高[57]; (c) CsxFA1–xPb(BryI1–y)3材料中的带隙和VOC 变化[37]; (d) K+钝化作用示意图[52]
    Fig. 5.  (a) Tolerance factor of APbI3[56]; (b) FACs-based perovskite light stability was improved obviously[57]; (c) changes of Eg and VOC in the CsxFA1–xPb(BryI1–y)3 compositions[37]; (d) schematic of K+ passivation[52].

    2016年, McMeekin等[57]用FA和Cs取代MA, 发现在I-Br混合的组成范围内, 卤化物分离导致的相不稳定区域被基本消除, 并且获得了光稳定的 FA0.83Cs0.17Pb(I0.6Br0.4)3基钙钛矿(图5(b)), 带隙约为1.75 eV, 基于此钙钛矿最终实现了PCE为17%和VOC为1.2 V的太阳电池. Bush等[37]认为基于FACsPbIBr的钙钛矿, 在A位用更多的Cs比在X位用更多的Br来调节带隙更为理想, 能够获得具有更高VOC和PCE的钙钛矿太阳电池(图5(c)). 因为Br含量越高, 卤素分离越快, 材料的耐光性也就越差. 例如, 在相同带隙1.75 eV下, FA0.6Cs0.4Pb(I0.7Br0.3)3相较于FA0.83Cs0.17Pb(I0.6Br0.4)3表现出明显的光稳定性.

    通过添加铷离子(Rb+, 略小于Cs+), 出现了新的组合如RbFA, RbCsFA, RbMAFA和RbCsFAMA等, 使得可用于研究的钙钛矿数量增加了近1倍. Saliba等[56]在FAMACs型钙钛矿中嵌入Rb, 基于1.63 eV的四阳离子钙钛矿太阳电池实现了21.4%的PCE, VOC最高可达1.24 V, 该器件在85 ℃下连续光照500 h后仍能保持95%的原有性能. Rb+和Cs+相对于MA+有较小的极性, 可以减少体系中的电子-声子耦合, 从而抑制相分离, 因此提高了宽带隙混合卤化物钙钛矿的光稳定性. 2019年, 麻省理工学院(MIT)和其他机构的研究人员基于纳米X射线荧光成像技术发现了在混合卤化物钙钛矿中引入碘化铯(铷)可使卤素分布更加均匀, 卤素的均质化会提高薄膜的载流子寿命, 优化载流子空间动力学, 有益于获得优异的光伏器件[97]. 此研究也为碱金属离子改善卤素相偏析提供了直接依据.

    除了铯和铷之外, 钾(K)和钠(Na)也被用来改善钙钛矿薄膜的质量和器件的性能. 然而, 由于K+和Na+太小, 无法满足钙钛矿的容差因子, 因此通常不会被纳入钙钛矿晶格中(图5(a)). Abdi-jalebi等[52]利用扫描透射电子显微镜能量色散X射线光谱(STEM-EDX)研究了K+在钙钛矿薄膜中的作用, 发现其主要位于薄膜的晶界、表面和衬底接触面处, 可有效地中和发生迁移的卤化物离子以及钝化晶界和表面点缺陷(图5(d)). 具体碱金属离子半径见表2.

    综上所述, 可以看出在混合卤化物钙钛矿中引入无机碱金属离子来提高钙钛矿薄膜的稳定性, 对进一步研究宽带隙钙钛矿薄膜及太阳电池具有很重要的指导意义.

    3.1.2   有机阳离子的调控

    Tan等[55]通过在光照下较为稳定的Cs-FA基混合卤化物钙钛矿中引入极少量偶极阳离子MA+, 明显抑制了钙钛矿薄膜中的非辐射复合. 因为MA+的偶极矩较大, 在空间中易于旋转并与晶格附近陷阱中心产生静电相互作用(图6(a)), 从而增强钙钛矿薄膜的缺陷容忍度. 他们在基于带隙分别为1.65和1.74 eV的PSCs中得到1.22和1.25 V的VOC, 相应的效率分别达到20.7%和19.1%, 这也是目前N-I-P型WBG-PSCs中最高效率之一(图6(b)).

    图 6 (a) 3种阳离子的分子构型以及MA+空间旋转的示意图[55]; (b) CsFA和CSMAFA钙钛矿太阳电池最佳J-V曲线和EQE曲线[55]; (c) Cs+和GA+混合到钙钛矿晶格以及对带隙的调控曲线[102]; (d) DMA+对钙钛矿带隙的调整[43]\r\nFig. 6. (a) The molecular configurations of the three cations and the rotation of MA+ in space[55]; (b) J-V and EQE curves of the best-performing CsFA and CsMAFA PSCs[55]; (c) Cs+ and GA+ are mixed into the perovskite lattice and the tuning curves of the Eg[102]; (d) DMA+ adjusts the Eg of perovskite[43].
    图 6  (a) 3种阳离子的分子构型以及MA+空间旋转的示意图[55]; (b) CsFA和CSMAFA钙钛矿太阳电池最佳J-V曲线和EQE曲线[55]; (c) Cs+和GA+混合到钙钛矿晶格以及对带隙的调控曲线[102]; (d) DMA+对钙钛矿带隙的调整[43]
    Fig. 6.  (a) The molecular configurations of the three cations and the rotation of MA+ in space[55]; (b) J-V and EQE curves of the best-performing CsFA and CsMAFA PSCs[55]; (c) Cs+ and GA+ are mixed into the perovskite lattice and the tuning curves of the Eg[102]; (d) DMA+ adjusts the Eg of perovskite[43].

    另外, 一些大体积阳离子, 例如二甲胺离子(DMA+)和胍离子(GA+)等也致力于拓宽钙钛矿带隙[98]. 这种策略允许在较低的Br比例下得到理想的宽带隙钙钛矿, 从而缓解高浓度Br导致的严重卤化物分离. 需要注意的是: 半径大的一价阳离子通常会导致钙钛矿晶格膨胀, 例如FA+半径大于MA+, 导致带隙减小. 目前这种现象普遍被认为是大体积阳离子与BX6八面体形成新的氢键产生了不同的相互作用力, 从而引起大体积离子附近的局部晶格微应变, 导致了八面体发生倾斜, 最终形成了类似于二维层状钙钛矿的晶体结构[99-101]. 具体来说, Stoddard等[102]发现, 这些半径大的离子可以与半径小的离子一同被纳入钙钛矿晶格, 实现完美的钙钛矿晶体相. 他们发现, Cs+足够小可以补偿大的GA+, 形成具有晶格应变且带隙变宽的黑色相钙钛矿(图6(c)). 最后基于1.75 eV的(FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3钙钛矿, 获得了1.24 V的VOC. 同样Palmstrom等[43]利用FA0.6Cs0.3DMA0.1PbI2.4Br0.6基钙钛矿, 发现在20%的Br组分下就可以得到1.7 eV的宽带隙(图6(d)). 这种含有DMA+的新组分钙钛矿, 卤素偏析程度大大降低, 最终基于P-I-N型的太阳电池得到了1.2 V的VOC和19.2%的PCE, 在N2环境中持续光照1000 h后依然保持稳定.

    3.1.3   卤素阴离子的调控

    近年来氯元素对钙钛矿结晶动力学过程的调整和太阳电池器件性能的提高被广泛报道. 通常是在钙钛矿前驱体溶液中加入含氯的前驱体, 如氯化铅(PbCl2)或甲基氯化铵(MACl)等. 然而, Cl相对于I的半径小很多, 很难按照控制比例将其纳入钙钛矿晶格. 大量实验证明, 氯元素可以促进杂化钙钛矿的微观结构演化, 调整钙钛矿的结晶取向以及增大载流子扩散长度[73-75,103-106]. 2019年, Chen等[40]通过在钙钛矿前驱体溶液中加入适量的MACl和MAH2PO2添加剂, 显著改善宽带隙(1.64—1.70 eV)钙钛矿薄膜形态. 其中MACl促进了晶粒尺寸增大, 而MAH2PO2一方面通过钝化钙钛矿晶界来减少非辐射复合, 另一方面有延缓MACl逃逸钙钛矿薄膜的作用, 二者协同作用提高了钙钛矿薄膜质量(图7). 最终在钙钛矿/硅TSCs中, 利用带隙为1.64 eV的钙钛矿顶电池来匹配两个子电池之间的光电流, 获得了1.80 V的VOC以及25.4%的PCE.

    图 7 基于MACl以及MAH2PO2添加剂的钙钛矿薄膜SEM图像[40]\r\nFig. 7. SEM images of perovskite films based on MACl and MAH2PO2 additives[40].
    图 7  基于MACl以及MAH2PO2添加剂的钙钛矿薄膜SEM图像[40]
    Fig. 7.  SEM images of perovskite films based on MACl and MAH2PO2 additives[40].

    最近, Xu等[44]报道了使用三卤化物(Cl, Br, I)调节带隙并在光照下稳定的高效钙钛矿顶电池. 通过Br和Cs作为桥梁缩小晶格参数, 允许Cl被纳入钙钛矿晶格从而增大带隙. 根据吸收光谱、EQE光谱和TOF-SIMS等分析结果表明, Cl元素在钙钛矿薄膜中均匀分布. 这种三卤化物钙钛矿的光生载流子寿命增加了2倍左右. 最重要的是, 在100倍光照强度下, 薄膜中的光诱导卤素分离也被显著抑制(图8). 在60 ℃下, 经过1000 h的最大功率点(MPP)运行后, 半透明顶电池的衰退率小于4%, 最终在钙钛矿/硅TSCs (1 cm2)中实现了27%的PCE, 其VOC接近1.9 V, 是当前文献报道的同类结构中的最好结果. 以往的研究认为氯相很难被引入钙钛矿晶格中, 而且不能有效地参与带隙调节, 因此该发现也有助于人们更深刻地认识金属-卤素钙钛矿中各元素的调节作用. 碘、溴、氯三卤化物新型钙钛矿有效抑制了“光致相分离”问题, 这也为其在聚光光伏中的应用提供了可能.

    图 8 三卤化物钙钛矿的光稳定性 (a), (b)对照组钙钛矿薄膜(Cs25Br20)经过10倍和100倍太阳光照20 min后的PL光谱, 箭头表示PL峰位随时间变化的方向; (c)对照组薄膜的光谱中心随时间的移动, 在更强光照下, 红移变得更加明显; (d), (e)三卤钙钛矿薄膜(Cs25Br20+Cl3)分别经过10倍和100倍太阳光照20 min后的PL光谱; (f)三卤钙钛矿薄膜的光谱中心随时间的移动, 在更强光照下, 蓝移变得更加明显[44]\r\nFig. 8. Light stability of triple-halide perovskite: (a), (b) PL spectra of control perovskite films (Cs25Br20) under 10-sun and 100-sun illumination for 20 min, respectively. Arrows indicate the direction of the PL shift over time; (c) the shift of the spectral centroids of control films over time. The red shift becomes more obvious under higher injection; (d), (e) PL spectra of triple-halide perovskites (Cs22Br15+Cl3) under 10-sun and 100-sun illumination for 20 min, respectively; (f) the shift of the spectral centroids of triple-halide perovskites over time. The blue shift becomes more obvious under higher injection[44].
    图 8  三卤化物钙钛矿的光稳定性 (a), (b)对照组钙钛矿薄膜(Cs25Br20)经过10倍和100倍太阳光照20 min后的PL光谱, 箭头表示PL峰位随时间变化的方向; (c)对照组薄膜的光谱中心随时间的移动, 在更强光照下, 红移变得更加明显; (d), (e)三卤钙钛矿薄膜(Cs25Br20+Cl3)分别经过10倍和100倍太阳光照20 min后的PL光谱; (f)三卤钙钛矿薄膜的光谱中心随时间的移动, 在更强光照下, 蓝移变得更加明显[44]
    Fig. 8.  Light stability of triple-halide perovskite: (a), (b) PL spectra of control perovskite films (Cs25Br20) under 10-sun and 100-sun illumination for 20 min, respectively. Arrows indicate the direction of the PL shift over time; (c) the shift of the spectral centroids of control films over time. The red shift becomes more obvious under higher injection; (d), (e) PL spectra of triple-halide perovskites (Cs22Br15+Cl3) under 10-sun and 100-sun illumination for 20 min, respectively; (f) the shift of the spectral centroids of triple-halide perovskites over time. The blue shift becomes more obvious under higher injection[44].
    3.1.4   路易斯特性添加剂

    PSCs的性能很大程度上取决于钙钛矿薄膜的形态. 大量研究表明, 钙钛矿薄膜中结晶度的提高和薄膜质量的改善可以大大降低卤化物分离的严重程度. 因此, 一些组分外的添加剂也对宽带隙钙钛矿薄膜和器件性能产生明显影响. 具有路易斯特性的添加剂是一类对特定缺陷有特殊影响的物质, 其中路易斯酸类指的是能够接受外来电子对的分子或离子, 路易斯碱则表示能够给出电子对的分子或离子. 这类物质可以与共价键结合形成酸碱配合物而无需电子转移, 在钝化钙钛矿薄膜缺陷中被广泛应用[96,107].

    硫氰酸根离子(SCN)是一类具有路易斯碱性质的物质, 也是目前宽带隙钙钛矿中最常用的添加剂之一[27,39,45,50,51,108,109]. 其作用机理是少量的硫氰酸盐与甲胺盐相互作用形成低稳定性的硫氰酸胺加合物, 随后容易分解成硫氰化氢气体和甲胺气体, 从而导致钙钛矿晶粒尺寸增大且有效减少晶界复合, 改善薄膜形貌和质量[110,111]. Yu等[50]通过在FA0.83Cs0.17Pb(I0.6Br0.4)3(1.74 eV)钙钛矿前驱体溶液中加入适量的硫氰酸铅(Pb(SCN)2)并采用DMF溶剂辅助退火工艺, 同时避免多余PbI2形成, 将宽带隙混合卤化物钙钛矿薄膜的平均晶粒尺寸从66 ± 24 nm增加到1036 ± 317 nm(图9(a)), 平均载流子寿命从330 ns增加到1000 ns以上. 最终钙钛矿太阳电池的平均VOC提高了80 mV, 最高PCE达到18.27%. 近日, Kim等[45]基于苯乙胺(PEA)二维添加剂的阴离子工程, 同时引入硫氰酸盐和碘盐, 其中硫氰酸根离子和碘离子分别提高了电池的短路电流密度(JSC)和开路电压(VOC). 作者通过透射电子显微镜(TEM)测试, 证明了这种二维添加剂的阴离子工程可以控制二维钝化层的电子、电荷输运特性和物理位置. 最终他们开发了一种二维/三维混合且高效稳定的PSCs (1.7 eV), 其峰值转换效率达到20.7% (图9(b)), 为目前基于此带隙的P-I-N型PSCs效率最高值, 且经过1000 h的连续照明后该器件仍然保持初始效率的80%以上(图9(c)). 更加重要的是, 他们在钙钛矿/硅两端TSCs中获得26.7%的效率.

    图 9 (a)硫氰酸铅添加剂和DMF溶剂辅助退火对钙钛矿薄膜性能的改善[50]; (b), (c)阴离子工程的钙钛矿太阳电池的器件性能和光稳定性[45]\r\nFig. 9. (a) Performance improvement of perovskite film by adding Pb(SCN)2 and DMF solvent assisted annealing[50]; (b), (c) the device performance and stability of PSCs with anion engineering[45].
    图 9  (a)硫氰酸铅添加剂和DMF溶剂辅助退火对钙钛矿薄膜性能的改善[50]; (b), (c)阴离子工程的钙钛矿太阳电池的器件性能和光稳定性[45]
    Fig. 9.  (a) Performance improvement of perovskite film by adding Pb(SCN)2 and DMF solvent assisted annealing[50]; (b), (c) the device performance and stability of PSCs with anion engineering[45].

    富勒烯及其衍生物除了是很好的电子传输材料外, 还是最具代表性的路易斯酸类物质. Xu等[112]和Liang等[113]最初发现了PCBM可以有效地消除PSCs迟滞问题, 以及钝化阴离子缺陷. 目前最常用的3种富勒烯衍生物包括C60, PCBM和ICBA[114-116].

    另外我们知道, 钙钛矿的成核以及结晶过程是十分复杂的, 通常与前驱体溶液的饱和度、掺杂物以及衬底的性质密切相关. 其中钙钛矿的成核速率与前驱体溶液过饱和度的关系可以表示为

    N代表成核数目; t表示时间; kB是玻耳兹曼常数; T代表实验时的温度; γ表示薄膜表面能; v代表溶液的摩尔体积[117]. 通过添加剂作用影响钙钛矿溶液的过饱和度也是一种改变薄膜形态的方法. 研究发现, 具有供电子性质的路易斯碱类添加剂能够引起前驱体溶质与溶剂分子之间相互作用力增加, 从而降低溶液的过饱和度, 导致成核数量降低, 核的生长将进一步被促进, 直到与相邻核位点接触或前驱体溶液被全部耗尽[118]. 2020年3月, Xue等[119]采用加快反溶剂萃取(BSE)的方法, 在保持光滑无针孔钙钛矿薄膜的同时, 有效地提高吸收层厚度来增加光程长度(图10(a)). 为了弥补由于电子扩散长度不足而导致的载流子收集受阻, 他们通过在前驱体溶液中加入适量供电子能力很强的路易斯碱添加剂——尿素, 将晶粒尺寸增大至原来2倍(图10(b)), 同时有效地降低了薄膜陷阱密度以及提高电子扩散长度至2.3 μm. 基于1.63 eV的半透明PSCs平均近红外透过率为85%且PCE达到19%, 在四端钙钛矿/硅TSCs中获得目前最高的28.2%的PCE. 在这之前, 该研究组曾采用另一种路易斯碱性质的添加剂——高极性的甲酰胺, 来调控FA-Cs基宽带隙钙钛矿的成核与结晶. 另外甲酰胺还可以增加铯盐的溶解度, 所制备的钙钛矿薄膜具有均匀分散的成核位点, 薄膜在退火之前就已经均匀致密覆盖在衬底. 作者利用XRD, 傅里叶变换红外光谱(FT-IR)以及XPS等测试证明了甲酰胺添加剂能够调节钙钛矿结晶过程, 可以绕过黄色相直接诱导黑色钙钛矿相的形成(图10(c)), 从而提高了钙钛矿相的纯度以及降低薄膜的缺陷密度(图10(d)). 最终基于甲酰胺添加剂的钙钛矿具有良好的光稳定性、热稳定性和空气稳定性, 所获得的WBG-PSCs(1.75 eV)具有1.23 V的高VOC和17.8%的PCE, 器件的正反扫迟滞可忽略不计[53]. 这个发现同时也强调了钙钛矿直接结晶和高度溶解的碱金属盐对高效稳定的WBG-PSCs的重要性, 为后续制备高性能的钙钛矿/硅TSCs奠定了一定的基础.

    图 10 (a)非加快反溶剂萃取(左)和加快反溶剂萃取(右)制备的钙钛矿薄膜SEM图像[119]; (b)无尿素添加剂(左)和尿素添加剂(右)的700 nm厚钙钛矿薄膜SEM图像[119]; (c)甲酰胺诱导直接形成钙钛矿相, 抑制非钙钛矿相的形成[53]; (d)甲酰胺添加剂提高钙钛矿薄膜结晶质量(右)[53]\r\nFig. 10. (a) SEM images of perovskite films prepared using no-boosted solvent extraction (BSE) (left) and BSE (right) methods [119]; (b) SEM images of thick perovskite films without urea additives (left) and with urea additives (right) [119]; (c) formamide induces direct formation of perovskite phase and inhibits the formation of non-perovskite phase[53]; (d) improvement of perovskite film crystallization quality by formamide additives (right)[53].
    图 10  (a)非加快反溶剂萃取(左)和加快反溶剂萃取(右)制备的钙钛矿薄膜SEM图像[119]; (b)无尿素添加剂(左)和尿素添加剂(右)的700 nm厚钙钛矿薄膜SEM图像[119]; (c)甲酰胺诱导直接形成钙钛矿相, 抑制非钙钛矿相的形成[53]; (d)甲酰胺添加剂提高钙钛矿薄膜结晶质量(右)[53]
    Fig. 10.  (a) SEM images of perovskite films prepared using no-boosted solvent extraction (BSE) (left) and BSE (right) methods [119]; (b) SEM images of thick perovskite films without urea additives (left) and with urea additives (right) [119]; (c) formamide induces direct formation of perovskite phase and inhibits the formation of non-perovskite phase[53]; (d) improvement of perovskite film crystallization quality by formamide additives (right)[53].

    通过溶液旋涂制备的钙钛矿多晶薄膜, 无论采用何种结晶方法和器件结构, 都无法彻底消除钙钛矿薄膜晶界和表面处缺陷. 与硅基太阳电池类似, 钙钛矿表面不连续的晶体结构产生的悬挂键会导致严重的载流子复合, 大大降低器件性能, 尤其是对于缺陷本身较多的宽带隙钙钛矿材料[120]. 因此, 对宽带隙钙钛矿薄膜表面进行钝化是减少表面悬挂键和提高器件性能的核心策略之一.

    烷基铵卤素盐是一种常用的钙钛矿表面钝化材料, 也是合成钙钛矿薄膜的原料之一, 通常是经过掺杂或分层来提高器件性能. 该类材料对钙钛矿表面的阴、阳离子缺陷均具有全面钝化作用, 并可通过氢键等相互作用来进一步增强钝化效果, 是高效钙钛矿相关器件的最佳钝化剂之一. 在WBG-PSCs中最常见的是在表面形成一层低维钙钛矿, 它具有三方面的作用: 1)钝化三维钙钛矿膜表面的缺陷; 2)改善吸收层与传输层之间的能级匹配; 3)作为一个界面保护层, 防止离子迁移和水分对三维钙钛矿区域的影响. Zhou等[49]用苄胺(BA)分子对宽带隙钙钛矿FA0.15Cs0.85Pb(I0.73Br0.27)3(1.72 eV)薄膜表面进行钝化. 他们发现在热和光的协同作用下, 未经BA处理的钙钛矿薄膜会发生降解和卤素迁移. 通过BA修饰后, 膜表面和晶界处的缺陷被很好地钝化, 从而防止了膜的分解和相分离. 另外, 除表面钝化外, BA分子与钙钛矿膜表面的PbI2发生反应, 形成薄的二维BA2PbI4钙钛矿, 该二维层与原先三维钙钛矿形成一个能量级联, 在提高空穴抽取的同时阻断电子传输, 因此界面处非辐射复合被显著抑制. 图11(a)描述了BA分子与钙钛矿膜表面相互作用示意图. 钝化后的PSCs器件性能和环境稳定性都有了很大的提高, 最终获得了1.24 V的VOC和17.2%的PCE. 2019年, Gharibzadeh等[59]报道了1.72 eV的WBG-PSCs, 稳定效率高达19.8%, 并且获得了1.31 V的创纪录的高VOC(图11(c)), 主要是用BABr的异丙醇溶液处理钙钛矿膜表面(图11(b)), 同样也是依靠形成二维薄层来钝化膜表面悬挂键, 同时促进空穴的提取. 根据Shockley-Queisser极限, 此工作中的VOC达到了该带隙可获得的最大开路电压的90%, 也获得了目前WBG-PSCs中所报道的最高的qVOC/Eg比值(0.76), 证明了电池器件中极低的非辐射复合. 最近, Duong等[54]系统研究了BABr表面钝化和体内掺杂的不同作用, 将BABr旋涂在钙钛矿薄膜表面能够起到钝化缺陷和改善能级匹配的效用, 从而提高器件性能; 如果将其加入到钙钛矿前驱体中, 则会在钙钛矿本体内形成纯的二维钙钛矿相, 这可能对三维钙钛矿的结晶度和电子结构产生负面影响, 从而影响载流子的输运. 他们通过使用表面钝化策略制作半透明钙钛矿太阳电池, 在钙钛矿/硅四端TSCs(1 cm2)中获得27.7%的PCE.

    图 11 (a) BA分子与钙钛矿薄膜表面作用示意图[49]; (b)用BABr的异丙醇溶液处理钙钛矿薄膜表面形成二维钙钛矿薄层[59]; (c)经过BABr溶液处理的钙钛矿太阳电池J-V曲线59; (d) BABr溶液处理的钙钛矿太阳电池稳定功率输出曲线(SPCE)59; (e)在连续照明(AM 1.5 G)下测量的最优电池的稳态开路电压(VOC)59; (f), (g)两种电池的开路电压和效率统计[59]\r\nFig. 11. (a) Schematic of the impact of BA modification on the perovskite film[49]; (b) the perovskite film surface was treated with BABr solution to form a 2D perovskite thin layer[59]; (c) J-V and (d) SPCE curve of PSC with and without BABr treatment[59]; (e) steady-state VOC of the best-performing PSC measured under continuous illumination (AM 1.5 G)[59]; (f), (g) VOC and PCE statistics of two kinds of PSCs[59].
    图 11  (a) BA分子与钙钛矿薄膜表面作用示意图[49]; (b)用BABr的异丙醇溶液处理钙钛矿薄膜表面形成二维钙钛矿薄层[59]; (c)经过BABr溶液处理的钙钛矿太阳电池J-V曲线59; (d) BABr溶液处理的钙钛矿太阳电池稳定功率输出曲线(SPCE)59; (e)在连续照明(AM 1.5 G)下测量的最优电池的稳态开路电压(VOC)59; (f), (g)两种电池的开路电压和效率统计[59]
    Fig. 11.  (a) Schematic of the impact of BA modification on the perovskite film[49]; (b) the perovskite film surface was treated with BABr solution to form a 2D perovskite thin layer[59]; (c) J-V and (d) SPCE curve of PSC with and without BABr treatment[59]; (e) steady-state VOC of the best-performing PSC measured under continuous illumination (AM 1.5 G)[59]; (f), (g) VOC and PCE statistics of two kinds of PSCs[59].

    溴化胍(GABr)表面钝化机理与BABr相似. Chen等[39]和Luo等[121]都认为, 经过GABr表面处理的钙钛矿功函数会降低, 吸收层的费米能级向真空能级移动. 这意味着GABr钝化后的钙钛矿膜更偏向于N型, 表明此方法更适合应用在P-I-N型钙钛矿太阳电池中.

    综上所述, 烷基铵卤素盐具有强大的综合钝化效果, 是一种近乎完美的钝化剂. 当然, 除了在WBG-PSCs中应用外, 在窄带隙钙钛矿太阳电池(NBG-PSCs)中也被广泛应用[6,58,122].

    此外, 由于钙钛矿薄膜表面缺陷的带电性, 离子键也可以作为另一种独特的钝化技术. 通过选择性地引入与缺陷电荷互补的离子使其与缺陷结合, 有效地钝化薄膜表面相应的陷阱态. 两性离子是一种电中性化合物, 虽然其总电荷为零, 但它同时带有正电荷和负电荷, 具备钝化钙钛矿薄膜表面正、负离子缺陷的双重功能, 特别是对于带隙较宽的混合卤素钙钛矿, 本身很容易发生卤素离子的迁移, 导致多余的阴离子聚积以及有机阳离子缺失[123]. 因此, 用两性离子钝化来提高WBG-PSCs性能也是一种十分有效的方法. Zheng等[124]首次报道了胆碱两性离子, 例如氯化胆碱、碘化胆碱、磷脂酰胆碱等, 可以钝化薄膜表面中两种类型的带电缺陷, 其中磷脂酰胆碱具有带正电荷的季铵盐基(N(CH3)3+)和带负电荷的磷酸基(PO4), 氯化胆碱以及碘化胆碱含有带正电荷的季铵盐基和带负电荷的卤化物阴离子. Zheng等[124]通过在钙钛矿薄膜表面上旋涂一层氯化胆碱, 在基于1.72 eV的P-I-N型PSCs中, 得到了17.2%的PCE和1.15 V的VOC, 相对于未钝化器件VOC提高了110 mV. 同样的方法也被用于提高全无机PSCs性能. Wang等[62]提出了一种裂纹填充界面工程方法, 与仅能对钙钛矿上表面进行修饰的常规表面工程不同, 该种方法在对β-CsPbI3(1.68 eV)上表面进行处理的同时, 还可利用初始β-CsPbI3薄膜中存在的孔洞、缺陷等进行填充, 通过这些微通道使碘化胆碱均匀分布于β-CsPbI3上下表层和内部, 从而实现钙钛矿全方位的修饰改性. 另外, 这些全方位分布的碘化胆碱还优化了吸收层与空穴传输层之间的能级匹配, 大幅度提高了太阳电池的光伏性能. 最终, 基于缺陷修复和能级优化后的β-CsPbI3全无机PSCs获得了18.4%的PCE.

    在硅基太阳电池中, 通常使用一些比硅带隙更大的材料作为表面钝化层, 如SiO2和SiNx[125]. 这种保护策略也可用于WBG-PSCs中. Jaysankar等[126]利用原子层沉积(ALD)法在Cs0.15FA0.85Pb(I0.71Br0.29)3和空穴传输层(Spiro-OMeTAD)界面上引入了一层三氧化二铝(Al2O3). 沉积的Al2O3层也可以钝化钙钛矿表面的悬挂键, 从而抑制载流子传输中的非辐射复合. 需要指出的是, 由于Al2O3的带隙较宽, 空穴应该通过隧穿的方式到达空穴传输层, 因此必须严格控制Al2O3的厚度. 基于此方法, 在钙钛矿/硅四端TSCs(0.13 cm2)中获得27.1%的效率.

    目前WBG-PSCs最大的问题就是开路电压损失严重. 主要包括以下几方面因素: 1)碘-溴混合的宽带隙钙钛矿材料在光照下存在明显的卤素分离, 形成了低带隙的富碘域, 导致了次带隙吸收增加, 最终限制太阳电池的开路电压. 当然, 正如前面所讨论的, 通过钙钛矿组分调控, 添加剂调整结晶形态等, 可以明显降低相分离的程度; 2)宽带隙钙钛矿吸收层表面以及与电荷传输层界面容易出现较严重的陷阱态, 从而捕获载流子, 造成严重的界面非辐射复合. 这里就需要进行有效的表、界面钝化来减少钙钛矿薄膜表面的悬挂键, 以及尽量与电荷传输层之间保持较好的物理接触, 保证界面质量; 3)如图12所示, 宽带隙钙钛矿吸收层相对于窄带隙吸收层来说, 与电荷传输层之间的能级偏移更大, 载流子一旦从吸收层转移至传输层, 就会失去部分自由能, 从而造成额外的开路电压损失.

    图 12 宽带隙钙钛矿、窄带隙钙钛矿和常用电荷传输层的能带图\r\nFig. 12. Energy band schematic of wide bandgap perovskite, narrow bandgap perovskite, and commonly used charge transport layers.
    图 12  宽带隙钙钛矿、窄带隙钙钛矿和常用电荷传输层的能带图
    Fig. 12.  Energy band schematic of wide bandgap perovskite, narrow bandgap perovskite, and commonly used charge transport layers.

    根据图12中吸收层与电荷传输层(CTL)能级排列来看, 在统计的空穴传输层(HTL)中, 聚合物PTAA和Poly-TPD与钙钛矿的价带能级最为匹配, 甚至超过了目前广泛使用的Spiro-OMeTAD, 而对于PEDOT: PSS的能级偏移较为严重, 不利于空穴的提取和阻挡电子; 同样, P3HT的带隙太窄, 也不利于阻挡电子, 因此目前基于这两种空穴传输层的PSCs开路电压都普遍较低. 在所示的电子传输层(ETL)中, TiO2和SnO2的能级位置要更优于P-I-N器件结构中常用的C60和PCBM. 此外, 可以发现C60和PCBM相对于吸收层的能级偏移要比Spiro-OMeTAD更加严重, 这也可能是目前N-I-P型太阳电池表现更为优异的原因之一. 为了改善在P-I-N型宽带隙钙钛矿与C60 (PCBM)之间的能级错位, 通常做法是插入一层薄的氟化锂(LiF)中间层, 其导带位置大约为–4.01 eV[127].

    除此之外, 在带隙更宽的全无机PSCs中, 为了改善吸收层与电荷传输层之间的能级严重失配, 通常会采用梯度带隙结构的PSCs, 即将不同带隙的钙钛矿吸收层梯度排列共同作为吸收层来提高载流子的提取和传输效率. 这种方法, 一方面有效降低载流子转移过程中的复合损耗, 增强内建电场, 从而提高开路电压, 另一方面增厚了钙钛矿薄膜有利于增加吸光度, 从而提高短路电流密度. 2018年, Liu团队[61,128]设计了一种梯度带隙的全无机PSCs, 采用CsPbBrI2(1.9 eV)和CsPbI3量子点(1.8 eV)作为分级吸收层, 最终获得PCE为14.5%的全无机PSCs. 上述研究表明, 从光学物理角度也可以提高PSCs性能, 这为在WBG-PSCs中设计梯度带隙吸收层提供了思路和基础.

    宽带隙钙钛矿材料最为重要的应用之一是制备TSCs. 具有互补带隙的多层吸收结构赋予了TSCs突破单结Shockley-Queisser极限的“超能力”. 在所有类型的TSCs中, 两端(2T)钙钛矿/硅叠层太阳电池的潜力最大, 目前该类型TSCs也获得了世界上最高的实验室效率[25,129-131]. 表3中总结了近年来典型的2T钙钛矿/硅TSCs的详细性能参数. 需要注意的是, 根据理论研究, 2T钙钛矿/硅TSCs的最理想顶电池带隙是1.7 eV及以上(图13(a))[80]. 然而在TSCs实际制备过程中, 存在多层非吸收层的寄生吸收, 导致此带隙范围的顶电池难以实现顶底电池最佳电流匹配. 此外, 这种带隙过于宽的钙钛矿材料还面临着严重的光照相分离问题, 往往难以达到与带隙相对应的理想开路电压值. 因此, 目前实际用于制备2T钙钛矿/硅TSCs的钙钛矿材料带隙往往低于1.7 eV, 主要集中于1.65 eV左右.

    表 3  近年来典型的2T钙钛矿/硅TSCs的详细性能参数总结
    Table 3.  Summary of detailed performance of typical 2T perovskite/silicon TSCs in recent years.
    Type Perovskite Eg/eV VOC/V Jsc/mA·cm–2 FF/% PCE/% Year Area/cm2 Ref.
    N-I-PMAPbI31.611.58011.5075.0013.7020151.00[15]
    FA0.83MA0.17Pb(I0.84Br0.16)31.631.78514.0079.5019.9020160.16[133]
    MAPbI31.601.69215.8079.9021.4020160.17[134]
    MAPbI31.601.70116.1070.1019.2020161.22[134]
    Cs0.19MA0.81PbI31.591.75118.8077.1022.7020180.25[135]
    Cs0.19MA0.81PbI31.591.77916.5074.1021.7020181.43[135]
    Cs0.19FA0.81Pb(I0.78Br0.22)31.631.76916.5065.4019.10201812.96[135]
    MA0.37FA0.48Cs0.15PbI2.01Br0.991.691.70315.2679.2020.5720170.03[136]
    FA0.5MA0.38Cs0.12PbI2.04Br0.961.691.65516.5081.1022.2220180.06[137]
    FA0.75MA0.25 Pb(I0.76B0.24)31.651.71015.4971.0018.8120180.13[138]
    Cs0.08FA0.74MA0.18Pb(I0.88Br0.12)31.651.78017.8275.0023.7320180.13[139]
    Cs0.1(FA0.75MA0.25)0.9Pb(I0.78Br0.22)31.671.83016.7470.0021.3120190.13[133]
    Cs 0.08FA0.69MA0.23Pb(I0.78Br22)31.671.75016.8974.1821.9320190.13[140]
    CsRbFAMAPbI3-xBrx 1.621.76317.8078.1024.5020181.00[132]
    P-I-NCs0.17FA0.83Pb(Br0.17I0.83)31.631.65018.1079.0023.6020171.00[141]
    FA 0.75Cs0.25Pb(I0.8Br0.2)31.681.77018.4077.0025.0020181.00[142]
    Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)31.601.76018.5078.5025.5020180.81[143]
    CsxFA1-xPb(I, Br)31.601.78819.5073.1025.2020181.42[144]
    CsxFA1-x Pb(I, Br)31.601.74119.5074.7025.4020181.42[145]
    Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.80017.8079.4025.4020180.49[40]
    Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)31.631.79219.0274.6025.4320191.00[146]
    Cs0.1MA0.9Pb(I0.9Br0.1)31.601.82019.2075.3026.202020NA[147]
    Cs 0.25FA0.75Pb(I0.85Br0.15Cl0.05)31.671.89019.1075.3027.0420201.00[44]
    Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)31.681.70019.8077.0025.7020200.83[46]
    (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.681.81818.9076.4026.2020201.00[45]
    注: NA表示文献中没有给出具体数值.
    下载: 导出CSV 
    | 显示表格
    图 13 (a) 2T叠层太阳电池的理论效率图[81]; (b), (c) N-I-P型和P-I-N型2T钙钛矿/硅TSCs结构示意图(TCO: 透明导电氧化物, AR coating: 抗反射膜)\r\nFig. 13. (a) Theoretical efficiency limit for 2T tandem solar cells; (b), (c) schematics of device structures for N-I-P and P-I-N 2T perovskite/silicon TSCs (TCO: Transparent Conductive Oxide. AR coating: Antireflective coating).
    图 13  (a) 2T叠层太阳电池的理论效率图[81]; (b), (c) N-I-P型和P-I-N型2T钙钛矿/硅TSCs结构示意图(TCO: 透明导电氧化物, AR coating: 抗反射膜)
    Fig. 13.  (a) Theoretical efficiency limit for 2T tandem solar cells; (b), (c) schematics of device structures for N-I-P and P-I-N 2T perovskite/silicon TSCs (TCO: Transparent Conductive Oxide. AR coating: Antireflective coating).

    根据钙钛矿顶电池在硅底电池的电荷传输层(ETL或者HTL)先后沉积顺序, TSCs亦可分为N-I-P型和P-I-N型两种(图13(b)图13(c)). 研究者通过比较最常用的基于Spiro-OMeTAD的N-I-P型TSCs和基于C60的P-I-N型TSCs, 发现后者在平面器件上具有更好的光学性能, 前者则因为Spiro-OMeTAD较大的寄生吸收导致了TSCs整体较低的短路电流密度[17]. 目前, 已发表的N-I-P型2T钙钛矿/硅TSCs最高效率为24.5%, 而P-I-N型为27%, 且认证效率已经超过29%, 因此后者在效率突破方面表现出更大的潜力[44,132]. 对N-I-P型TSCs而言, 有限的空穴传输层材料使其效率进一步提升受到限制, 因此, 在接下来的工作中, 需要重点关注高效宽带隙钙钛矿太阳电池中空穴传输层的研究.

    在过去的几年里, 钙钛矿材料表现出高效率、低成本的绝对优势, 特别是带隙可调性为其在多结叠层太阳电池、彩色太阳电池以及光电催化中的应用提供了先决条件. 目前实验室基于钙钛矿/硅两端TSCs的光电转换效率已经超过了商用晶硅太阳电池, 并朝着更高效率发展. 因此需要关注将这种光伏技术从实验室向商业产品转化的可行性以及挑战.

    稳定性问题是阻碍基于钙钛矿光伏器件迈入商业化的主要障碍, 尤其是考虑到钙钛矿在TSCs中的应用, 它必须和硅具有相当的稳定性, 才能使其更具吸引力. 到目前为止, 单结PSCs最长使用寿命约为1 a, 远远小于商业化光伏预计的25 a[117]. PSCs的寿命受多种因素的影响, 可以分为外在因素和内在因素两大类. 外在因素包括外界的湿度、温度、光照度、氧气以及冰雹等, 可以通过封装技术加以改善或避免; 而内在因素中钙钛矿材料本身的不稳定性以及PSCs中的多个界面是造成器件不稳定的关键[148]. 导致钙钛矿不稳定的内在因素包括其吸湿性、热不稳定性和离子迁移等. 其中吸湿性也可以通过封装技术来解决; 热不稳定性可以通过无机组分调控来解决, 比如全无机PSCs; 关于离子迁移问题, 在所有卤化物钙钛矿中都无法避免固有的离子迁移, 尤其是在光照下混合卤素宽带隙钙钛矿材料很容易发生卤素离子迁移, 这种情况在缺陷位点、晶界和界面处表现得更为严重. 抑制或者阻碍离子迁移的最主要方法还是通过薄膜体缺陷、晶粒边界、界面处的钝化和薄膜结晶度的提高, 以及离子取代来改变钙钛矿晶格的堆积密度.

    除了钙钛矿材料本身的稳定性外, 在太阳电池中电荷传输层与钙钛矿层直接接触, 一方面需要保证其良好的电荷传输, 另一方面还应该考虑它们对器件稳定性的影响. 目前N-I-P型PSCs中最常用的空穴传输层Spiro-OMeTAD有易吸水、易受热、易与电极中重金属离子反应且价格十分昂贵等问题, 在考虑钙钛矿太阳电池商业化时, 必须予以更换[149]. 一些无机空穴传输材料, 例如氧化镍(NiOx), 硫氰酸亚铜(Cu(SCN)2)等是提高太阳电池稳定性的有效方法, 而且对TSCs产生的寄生吸收也远小于Spiro-OMeTAD, 但与此同时这种器件的效率还有待提高. 这也就说明了基于钙钛矿的太阳电池效率和稳定性没有同时被优化, 但也没有任何证据来说明钙钛矿太阳电池不能同时实现高效率和高稳定性. 因此后续对于具有更高传输效率、更小寄生吸收且更有利于器件稳定性的电荷传输层材料研究将是一个非常重要的研究内容.

    另外, 虽然目前已有大量研究者关注钙钛矿太阳电池的稳定性. 但是其研究的方式和方法还不全面, 鲜有进行常规电池稳定性所需要的IEC标准涉及的85 ℃和85%的双85温度和湿度测试. 因此, 宽带隙钙钛矿电池稳定性及其机理的研究具有非常重要的意义, 对推动未来钙钛矿/硅叠层电池的产业化进程具有重要影响.

    [1]

    Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dou L, Yang Y, You J B, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [6]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z, Ye Q, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [7]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [8]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J Hee, Seok S I 2019 Science 366 749Google Scholar

    [9]

    Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulovic V 2019 Energy Environ. Sci. 12 2192Google Scholar

    [10]

    Liu Y H, Akin S, Pan L F, Uchida R, Grätzel M 2019 Sci. Adv. 5 eaaw2543Google Scholar

    [11]

    Zhu P C, Gu S, Luo X, Gao Y, Li S L, Zhu J, Tan H R 2019 Adv. Energy Mater. 10 1903083Google Scholar

    [12]

    Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [13]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [14]

    Beiley Z M, McGehee M D 2012 Energy Environ. Sci. 5 9173Google Scholar

    [15]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [16]

    Albrecht S, Saliba M, Correa Baena J P, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [17]

    Altazin S, Stepanova L, Werner J, Niesen B, Ballif C, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [18]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [19]

    Hu W P, He X, Fang Z M, Lian W T, Shang Y B, Li X C, Zhou W R, Zhang M M, Chen T, Lu Y L, Zhang L J, Ding L M, Yang S F 2020 Nano Energy 68 104362Google Scholar

    [20]

    Jia X, Ding L M 2018 Sci. China Mater. 62 54Google Scholar

    [21]

    Zuo C T, Ding L M 2017 Angew. Chem. Int. Ed. 56 6528Google Scholar

    [22]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [23]

    Hu J N, Cheng Q, Fan R D, Zhou H P 2017 Sol. RRL 1 1700045Google Scholar

    [24]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [25]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [26]

    Al-Ashouri A, Magomedov A, Roß M, et al. 2019 Energy Environ. Sci. 12 3356Google Scholar

    [27]

    Kim D H, Muzzillo C P, Tong J, et al. 2019 Joule 3 1734Google Scholar

    [28]

    Lin R, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [29]

    McMeekin D P, Mahesh S, Noel N K, Klug M T, Lim J, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [30]

    Xue Q F, Xia R X, Brabec C J, Yip H L 2018 Energy Environ. Sci. 11 1688Google Scholar

    [31]

    Henemann A 2008 Renew. Energy Focus 9 14Google Scholar

    [32]

    Shi B, Duan L R, Zhao Y, Luo J S, Zhang X D 2020 Adv. Mater. 32 1806474Google Scholar

    [33]

    Park S, Chang W J, Lee C W, Park S, Ahn H Y, Nam K T 2016 Nat. Energy 2 16185Google Scholar

    [34]

    陈为, 魏伟, 孙予罕 2017 中国科学: 化学 47 1251Google Scholar

    Chen W, Wei W, Sun Y H 2017 Sci. China: Chem. 47 1251Google Scholar

    [35]

    Hu M, Bi C, Yuan Y B, Bai Y, Huang J S 2016 Adv. Sci. 3 1500301Google Scholar

    [36]

    Lin Y Z, Chen B, Zhao F W, Zheng X P, Deng Y H, Shao Y C, Fang Y J, Bai Y, Wang C R, Huang J S 2017 Adv. Mater. 29 1700607Google Scholar

    [37]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [38]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [39]

    Chen C, Song Z N, Xiao C X, Zhao D W, Shrestha N, Li C W, Yang G, Yao F, Zheng X L, Ellingson R J, Jiang C S, Al-Jassim M, Zhu K, Fang G J, Yan Y F 2019 Nano Energy 61 141Google Scholar

    [40]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [41]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip L P, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [42]

    Liu C, Yang Y Z, Zhang C L, Wu S H, Wei L Y, Guo F, Arumugam G M, Hu J L, Liu X Y, Lin J, Schropp R E L, Mai Y H 2020 Adv. Mater. 32 1907361Google Scholar

    [43]

    Palmstrom A F, Eperon G E, Leijtens T, et al. 2019 Joule 3 2193Google Scholar

    [44]

    Xu J X, Boyd C C, Yu Z J, et al. 2020 Science 367 1097Google Scholar

    [45]

    Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C X, Kim J, Tong J H, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H, Shin B 2020 Science 368 155Google Scholar

    [46]

    Ye J Y, Tong J H, Hu J, et al. 2020 Sol. RRL 4 2000082Google Scholar

    [47]

    Duong T, Wu Y L, Shen H P, et al. 2017 Adv. Energy Mater. 7 1700228Google Scholar

    [48]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232Google Scholar

    [49]

    Zhou Y, Wang F, Cao Y, Wang J P, Fang H H, Loi M A, Zhao N, Wong C P 2017 Adv. Energy Mater. 7 1701048Google Scholar

    [50]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [51]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [52]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. 2018 Nature 555 497Google Scholar

    [53]

    Kim J, Saidaminov M I, Tan H R, et al. 2018 Adv. Mater. 30 1706275Google Scholar

    [54]

    Duong T, Pham H, Kho T H, et al. 2019 Adv. Energy Mater. 10 1903553Google Scholar

    [55]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Petar T, Danny B, Grant W, Tan F R, Zhuang T T 2018 Nat. Commun. 9 3100Google Scholar

    [56]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [57]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [58]

    Zhuang J, Mao P, Luan Y G, Yi X H, Tu Z Y, Zhang Y Y, Yi Y P, Wei Y Z, Chen N L, Lin T, Wang F Y, Li C, Wang J Z 2019 ACS Energy Lett. 4 2913Google Scholar

    [59]

    Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. 2019 Adv. Energy Mater. 9 1803699Google Scholar

    [60]

    Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B 2018 Nat. Commun. 9 2225Google Scholar

    [61]

    Zhang J, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q, Liu S Z F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [62]

    Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [63]

    Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B 2019 Adv. Mater. 1 1905143Google Scholar

    [64]

    Xiao Q, Tian J J, Xue Q F, Wang J, Xiong B J, Han M M, Li Z, Zhu Z L, Yip H L, Li Z 2019 Angew. Chem. Int. Ed. 58 17724Google Scholar

    [65]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [66]

    Kim H S, Im S H, Park N G 2014 J. Phys.Chem. C 118 5615Google Scholar

    [67]

    Li Z, Yang M J, Park J S, Wei S H, Berry J, Zhu K 2015 Chem. Mater. 28 284Google Scholar

    [68]

    Chang Y H, Park C H 2004 J. Korean Phys. Soc. 44 889

    [69]

    Anaya M, Correabaena J P, Lozano G L, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo M 2016 J. Mater. Chem. A 4 11214Google Scholar

    [70]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [71]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [72]

    Saliba M, Correa-Baena J P, Grätzel M, Hagfeldt A, Abate A 2017 Angew. Chem. Int. Ed. 57 2554Google Scholar

    [73]

    Unger E L, Bowring A R, Tassone C J, Pool V L, Gold-Parker A, Cheacharoen R, Stone K H, Hoke E T, Toney M F, McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [74]

    Dong Q, Yuan Y B, Shao Y C, Fang Y J, Wang Q, Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [75]

    Lee B, Hwang T, Lee S, Shin B, Park B 2019 Sci. Rep. 9 4803Google Scholar

    [76]

    Zhang C P, Li Z P, Liu J, Xin Y C, Shao Z P, Cui G, Pang S P 2018 ACS Energy Lett. 3 1801Google Scholar

    [77]

    Ma T, Wang S W, Zhang Y W, Zhang K X, Yi L X 2020 J. Mater. Sci. 55 464Google Scholar

    [78]

    Tong G, Ono L K, Qi Y B 2019 Energy Technol. 8 1900961Google Scholar

    [79]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [80]

    Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699Google Scholar

    [81]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [82]

    Mahesh S, Ball J M, Oliver R D J, McMeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [83]

    Levine I, Vera O G, Kulbak M, Ceratti D-R, Rehermann C, Márquez J A, Levcenko S, Unold T, Hodes G, Balberg I, Cahen D, Dittrich T 2019 ACS Energy Lett. 4 1150Google Scholar

    [84]

    Song Z, Chen C, Li C, Awni R A, Zhao D, Yan Y 2019 Semicond. Sci. Technol. 34 093001Google Scholar

    [85]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [86]

    Slotcavage D J, Karunadasa H I, McGehee M D 2016 ACS Energy Lett. 1 1199Google Scholar

    [87]

    Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar

    [88]

    Beal R E, Hagström N Z, Barrier J, Gold-Parker A, Prasanna R, Bush K A, Passarello D, Schelhas L T, Brüning K, Tassone C J, Steinrück H G, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [89]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [90]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204Google Scholar

    [91]

    Liu S, Guan Y J, Sheng Y S, Hu Y, Rong Y G, Mei A Y, Han H W 2020 Adv. Energy Mater. 10 1902492Google Scholar

    [92]

    Gao F, Zhao Y, Zhang X W, You J B 2020 Adv. Energy Mater. 10 1902650Google Scholar

    [93]

    Han J H, Luo S P, Yin X W, Zhou Y, Nan H, Li J B, Li X, Oron D, Shen H P, Lin H 2018 Small 14 1801016Google Scholar

    [94]

    Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [95]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 16142Google Scholar

    [96]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [97]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [98]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 12 4712Google Scholar

    [99]

    Kubicki D, Prochowicz D, Hofstetter A, Saski M, Yadav P, Bi D, Pellet N, Lewiński J, Zakeeruddin S M, Grätzel M 2018 J. Mater. Chem. A 140 3345Google Scholar

    [100]

    Jodlowski A D, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin M K 2017 Nat. Energy 2 972Google Scholar

    [101]

    Chen H, Wei Q, Saidaminov M I, Wang F, Johnston A, Hou Y, Peng Z J, Xu K M, Zhou W J, Liu Z H, Qiao L, Wang X, Xu S W, Li J Y, Long R, Ke Y Q, Sargent E H, Ning Z J 2019 Adv. Mater. 31 e1903559Google Scholar

    [102]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [103]

    Yu H, Wang F, Xie F Y, Li W W, Chen J, Zhao N 2014 Adv. Funct. Mater. 24 7102Google Scholar

    [104]

    Chae J S, Dong Q F, Huang J S, Centrone A 2015 Nano Lett. 15 8114Google Scholar

    [105]

    Gao C, Liu J, Liao C, Ye Q Y, Zhang Y Z, He X L, Guo X W, Mei J, Lau W 2015 RSC Adv. 5 26175Google Scholar

    [106]

    Xie Y L, Yu H Y, Duan J S, Xu L, Hu B 2020 ACS Appl. Mater. Interfaces 12 11190Google Scholar

    [107]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [108]

    Heo D Y, Lee T H, Iwan A, Kavan L, Omatova M, Majkova E, Kamarás K, Jang H W, Kim S Y 2020 J. Power Sources 458 228067Google Scholar

    [109]

    Tong J H, Song Z N, Kim D H, et al. 2019 Science 364 475Google Scholar

    [110]

    Tang G, Yang C, Stroppa A, Fang D N, Hong J W 2017 J. Chem. Phys. 146 224702Google Scholar

    [111]

    Ke W J, Xiao C X, Wang C L, et al. 2016 Adv. Mater. 28 5214Google Scholar

    [112]

    Xu J X, Buin A, Ip A H, et al. 2015 Nat. Commun. 6 7081Google Scholar

    [113]

    Liang P W, Chueh C C, Williams S T, Jen A K Y 2015 Adv. Energy Mater. 5 1402321Google Scholar

    [114]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [115]

    Fang Y J, Bi C, Wang D, Huang J S 2017 ACS Energy Lett. 2 782Google Scholar

    [116]

    Cui C H, Li Y W, Li Y F 2017 Adv. Energy Mater. 7 1601251Google Scholar

    [117]

    Lee J W, Park N G 2019 Adv. Energy Mater. 10 1903249Google Scholar

    [118]

    Lee J W, Kim H S, Park N G 2016 Acc. Chem. Res. 49 311Google Scholar

    [119]

    Xue D J, Hou Y, Liu S C, Wei M, Chen B, Huang Z, Li Z, Sun B, Proppe A H, Dong Y, Saidaminov M I, Kelley S O, Hu J S, Sargent E H 2020 Nat. Commun. 11 1514Google Scholar

    [120]

    Jan S, Robby P, Rolf B 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [121]

    Luo D Y, Yang W Q, Wang Z P, et al. 2018 Science 360 1442Google Scholar

    [122]

    Bu X N, Westbrook R J E, Lanzetta L, Ding D, Chotchuangchutchaval T, Aristidou N, Haque S A 2019 Sol. RRL 3 1800282Google Scholar

    [123]

    Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S 2017 Joule 1 371Google Scholar

    [124]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [125]

    Elgamel H E, Barnett A M, Rohatgi A, Chen Z, Vinckier C, Nijs J, Mertens R 1995 J. Appl. Phys. 78 3457Google Scholar

    [126]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [127]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [128]

    Bian H, Bai D L, Jin Z W, Wang K, Liang L, Wang H R, Zhang J R, Wang Q, Liu S Z F 2018 Joule 2 1500Google Scholar

    [129]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [130]

    Zhao D W, Ding L M 2020 Sci. Bull. 65 1144Google Scholar

    [131]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [132]

    Shen H P, Omelchenko S T, Jacobs D A, et al. 2018 Sci. Adv. 4 eaau9711Google Scholar

    [133]

    Hou F H, Yan L L, Shi B, et al. 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [134]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [135]

    Sahli F, Kamino B A, Werner J, et al. 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [136]

    Fan R D, Z N, Zhang L, Yang R, Meng Y, Li L W, Guo T, Chen Y H, Xu Z Q, Zheng G H J, Huang Y, Li L, Qin L, Qiu X H, Chen Q, Zhou H P 2017 Sol. RRL 1 1700149Google Scholar

    [137]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [138]

    Zhu S J, Y X, Ren Q S, et al. 2018 Nano Energy 45 280Google Scholar

    [139]

    Zhu S J, Hou F H, Huang W, et al. 2018 Sol. RRL 2 1800176Google Scholar

    [140]

    Hou F H, Han C, Isabella O, et al. 2019 Nano Energy 56 234Google Scholar

    [141]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [142]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H-P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [143]

    Marko Jošt, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B, Albrecht S 2018 Energy Environ. Sci. 11 3511Google Scholar

    [144]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [145]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [146]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [147]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [148]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [149]

    Li Z, Xiao C X, Yang Y, et al. 2017 Energy Environ. Sci. 10 1234Google Scholar

  • 图 1  宽带隙钙钛矿太阳电池性能统计图(Eg ≥ 1.63 eV, PCE > 15%) (a) VOCEg之间的关系, 红色阴影部分表示的是qVOCEg的比值小于0.75, 其中q表示单位电荷量; (b) PCE和Eg之间的关系

    Fig. 1.  Performance statistics of WBG-PSCs (Eg ≥ 1.63 eV, PCE > 15%): (a) Relationship between VOC and Eg. The red shaded part indicates that the ratio between qVOC and Eg is less than 0.75, where q represents the unit charge; (b) relationship between PCE and Eg.

    图 2  (a)钙钛矿结构; (b)不同钙钛矿所对应的容差因子图以及相应的晶体结构[67]

    Fig. 2.  (a) Structure of perovskite; (b) corresponding tolerance factor and crystal structure of different perovskites[67].

    图 3  (a) MAPb(BrxI1–x)3的紫外可见吸收光谱、不同颜色钙钛矿薄膜照片以及带隙随Br含量变化的函数图[70]; (b) FAPb(Br1–yIy)3的紫外可见吸收光谱和光致发光(PL)光谱[71]; (c) CsPb(BrzI1–z)3的钙钛矿溶液和对应的光致发光(PL)谱[79]

    Fig. 3.  (a) UV-visible absorption spectra, photos of perovskite films with different colors, as well as functional graph between bandgap and bromine content of MAPb(BrxI1–x)3[70]; (b) UV-visible absorption spectra and photoluminescence (PL) spectra of FAPb(Br1–yIy)3[71]; (c) photos of CsPb(BrzI1–z)3 solutions and corresponding PL spectra[79].

    图 4  (a)卤素离子在光照下发生迁移和团簇示意图[90]; (b) MAPb(Br0.4I0.6)3在光照下的光致发光(PL)光谱, 插图表示初始PL增长率的温度依赖性[85]; (c)在约50 mW /cm2的条件下, MAPb(Br0.4I0.6)3膜在白光浸泡5 min前(黑色线)、后(红色线)的XRD图谱, 将MAPb(Br0.2I0.8)3膜(绿色虚线)和MAPb(Br0.7I0.3)3膜(棕色虚线)的XRD图谱进行比较[85]

    Fig. 4.  (a) Schematic illustration of halogen ion migration and clusters under light[90]; (b) photoluminescence (PL) spectra of MAPb(Br0.4I0.6)3 under light. The illustration shows the temperature dependence of the initial PL growth rate[85]; (c) the XRD pattern of MAPb(Br0.4I0.6)3 film before (black) and after (red) white-light soaking for 5 min at about 50 mW/cm2. XRD patterns of the MAPb(Br0.2I0.8)3 film (dashed green) and the MAPb(Br0.7I0.3)3 film (dashed brown) are included for comparison[85].

    图 5  (a) APbI3钙钛矿的容差因子[56]; (b) FACs基钙钛矿光稳定性明显提高[57]; (c) CsxFA1–xPb(BryI1–y)3材料中的带隙和VOC 变化[37]; (d) K+钝化作用示意图[52]

    Fig. 5.  (a) Tolerance factor of APbI3[56]; (b) FACs-based perovskite light stability was improved obviously[57]; (c) changes of Eg and VOC in the CsxFA1–xPb(BryI1–y)3 compositions[37]; (d) schematic of K+ passivation[52].

    图 6  (a) 3种阳离子的分子构型以及MA+空间旋转的示意图[55]; (b) CsFA和CSMAFA钙钛矿太阳电池最佳J-V曲线和EQE曲线[55]; (c) Cs+和GA+混合到钙钛矿晶格以及对带隙的调控曲线[102]; (d) DMA+对钙钛矿带隙的调整[43]

    Fig. 6.  (a) The molecular configurations of the three cations and the rotation of MA+ in space[55]; (b) J-V and EQE curves of the best-performing CsFA and CsMAFA PSCs[55]; (c) Cs+ and GA+ are mixed into the perovskite lattice and the tuning curves of the Eg[102]; (d) DMA+ adjusts the Eg of perovskite[43].

    图 7  基于MACl以及MAH2PO2添加剂的钙钛矿薄膜SEM图像[40]

    Fig. 7.  SEM images of perovskite films based on MACl and MAH2PO2 additives[40].

    图 8  三卤化物钙钛矿的光稳定性 (a), (b)对照组钙钛矿薄膜(Cs25Br20)经过10倍和100倍太阳光照20 min后的PL光谱, 箭头表示PL峰位随时间变化的方向; (c)对照组薄膜的光谱中心随时间的移动, 在更强光照下, 红移变得更加明显; (d), (e)三卤钙钛矿薄膜(Cs25Br20+Cl3)分别经过10倍和100倍太阳光照20 min后的PL光谱; (f)三卤钙钛矿薄膜的光谱中心随时间的移动, 在更强光照下, 蓝移变得更加明显[44]

    Fig. 8.  Light stability of triple-halide perovskite: (a), (b) PL spectra of control perovskite films (Cs25Br20) under 10-sun and 100-sun illumination for 20 min, respectively. Arrows indicate the direction of the PL shift over time; (c) the shift of the spectral centroids of control films over time. The red shift becomes more obvious under higher injection; (d), (e) PL spectra of triple-halide perovskites (Cs22Br15+Cl3) under 10-sun and 100-sun illumination for 20 min, respectively; (f) the shift of the spectral centroids of triple-halide perovskites over time. The blue shift becomes more obvious under higher injection[44].

    图 9  (a)硫氰酸铅添加剂和DMF溶剂辅助退火对钙钛矿薄膜性能的改善[50]; (b), (c)阴离子工程的钙钛矿太阳电池的器件性能和光稳定性[45]

    Fig. 9.  (a) Performance improvement of perovskite film by adding Pb(SCN)2 and DMF solvent assisted annealing[50]; (b), (c) the device performance and stability of PSCs with anion engineering[45].

    图 10  (a)非加快反溶剂萃取(左)和加快反溶剂萃取(右)制备的钙钛矿薄膜SEM图像[119]; (b)无尿素添加剂(左)和尿素添加剂(右)的700 nm厚钙钛矿薄膜SEM图像[119]; (c)甲酰胺诱导直接形成钙钛矿相, 抑制非钙钛矿相的形成[53]; (d)甲酰胺添加剂提高钙钛矿薄膜结晶质量(右)[53]

    Fig. 10.  (a) SEM images of perovskite films prepared using no-boosted solvent extraction (BSE) (left) and BSE (right) methods [119]; (b) SEM images of thick perovskite films without urea additives (left) and with urea additives (right) [119]; (c) formamide induces direct formation of perovskite phase and inhibits the formation of non-perovskite phase[53]; (d) improvement of perovskite film crystallization quality by formamide additives (right)[53].

    图 11  (a) BA分子与钙钛矿薄膜表面作用示意图[49]; (b)用BABr的异丙醇溶液处理钙钛矿薄膜表面形成二维钙钛矿薄层[59]; (c)经过BABr溶液处理的钙钛矿太阳电池J-V曲线59; (d) BABr溶液处理的钙钛矿太阳电池稳定功率输出曲线(SPCE)59; (e)在连续照明(AM 1.5 G)下测量的最优电池的稳态开路电压(VOC)59; (f), (g)两种电池的开路电压和效率统计[59]

    Fig. 11.  (a) Schematic of the impact of BA modification on the perovskite film[49]; (b) the perovskite film surface was treated with BABr solution to form a 2D perovskite thin layer[59]; (c) J-V and (d) SPCE curve of PSC with and without BABr treatment[59]; (e) steady-state VOC of the best-performing PSC measured under continuous illumination (AM 1.5 G)[59]; (f), (g) VOC and PCE statistics of two kinds of PSCs[59].

    图 12  宽带隙钙钛矿、窄带隙钙钛矿和常用电荷传输层的能带图

    Fig. 12.  Energy band schematic of wide bandgap perovskite, narrow bandgap perovskite, and commonly used charge transport layers.

    图 13  (a) 2T叠层太阳电池的理论效率图[81]; (b), (c) N-I-P型和P-I-N型2T钙钛矿/硅TSCs结构示意图(TCO: 透明导电氧化物, AR coating: 抗反射膜)

    Fig. 13.  (a) Theoretical efficiency limit for 2T tandem solar cells; (b), (c) schematics of device structures for N-I-P and P-I-N 2T perovskite/silicon TSCs (TCO: Transparent Conductive Oxide. AR coating: Antireflective coating).

    表 1  宽带隙钙钛矿太阳电池性能统计(Eg ≥ 1.63 eV, PCE > 15%)

    Table 1.  WBG-PSCs performance statistics (Eg ≥ 1.63 eV and PCE > 15%).

    TypePerovskiteEg/eVVOC/VqVOC/EgJSC/mA·cm–2 FF/%PCE/%Ref.
    p-i-nMAPbI2.5Br0.51.721.0600.6118.3078.216.60 [35]
    p-i-n(FA0.83MA0.17)0.95Cs0.05Pb(I0.6Br0.4)31.711.2100.7119.7077.518.50 [36]
    p-i-nFA0.6Cs0.4Pb(I0.7Br0.3)31.751.1700.6717.5080.016.30 [37]
    p-i-nFA0.83MA0.17Pb(I0.6Br0.4)31.721.1500.6719.4077.017.20 [38]
    p-i-nFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2400.7117.9281.918.19 [39]
    p-i-n(FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)31.681.1700.7021.2079.819.50 [27]
    p-i-nCs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.1900.7319.5080.218.60[40]
    p-i-nCsPbI31.731.1600.6717.7078.616.10[41]
    p-i-nCsPbI2Br1.801.2300.6715.2678.015.19[42]
    p-i-nFA0.6Cs0.3DMA0.1PbI2.4Br0.61.701.2000.7019.6082.019.40 [43]
    p-i-nFA0.75Cs0.25Pb(I0.8Br0.2)31.681.2170.7220.1883.620.42[44]
    p-i-n(FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.671.2000.72NANA20.70[45]
    p-i-n(FA0.64MA0.20Cs0.15)Pb0.99(I0.79Br0.2)31.681.1960.7121.6581.521.00[46]
    n-i-pRb0.05(FA0.75MA0.15Cs0.1)0.95PbI2Br1.731.1200.7119.4073.015.90 [47]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.1600.6618.2778.516.28 [48]
    n-i-pFA0.85Cs0.15Pb(I0.73Br0.27)31.721.2400.7219.8373.718.13 [49]
    n-i-pFA0.8Cs0.2Pb(I0.7Br0.3)31.751.2500.7118.5379.018.27 [50]
    n-i-pMAPb(Br0.2I0.8)31.721.1200.6517.3082.315.90 [51]
    n-i-pK0.1(Cs0.06FA0.79MA0.15)0.9Pb(I0.4Br0.6)31.781.2300.6917.9079.017.50 [52]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.751.2300.7018.3479.017.80 [53]
    n-i-pCs0.17FA0.83PbI2.2Br0.81.721.2700.7419.3077.418.60 [54]
    n-i-pCs0.12MA0.05FA0.83Pb(I0.6Br0.4)31.741.2500.7219.0081.519.10 [55]
    n-i-pRb5(Cs5MAFA)95Pb(I0.83Br0.17)31.631.2400.7622.8081.021.60 [56]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)31.741.2000.7019.4075.117.00 [57]
    n-i-pFA0.17Cs0.83PbI2.2Br0.81.721.2440.7219.8075.018.60 [51]
    n-i-pCs0.2FA0.8Pb(I0.75Br0.25)31.651.2200.7421.2080.520.70 [55]
    n-i-pBA0.09(FA0.83 Cs0.17)0.91Pb(I0.6Br0.4)31.721.1800.6919.8073.017.30 [38]
    n-i-pFA0.15Cs0.85Pb(I0.73Br0.27)31.721.2400.7219.8373.718.10 [58]
    n-i-pFA0.83Cs0.17Pb(I0.6Br0.4)3 1.721.3100.7619.3078.019.50 [59]
    n-i-pRb0.05Cs0.095 MA0.1425 FA0.7125PbI2Br1.721.2050.7018.0078.917.10 [54]
    n-i-pCsPbI31.731.0800.6218.4179.3215.71 [60]
    n-i-pCsPbI2Br1.801.2300.6816.7977.8116.07 [61]
    n-i-pβ-CsPbI31.681.1100.6620.2382.018.40 [62]
    n-i-pCsPbI3-xBrx1.771.2340.6918.3082.518.64 [63]
    n-i-pCsPbI2Br1.801.2700.7115.4079.015.50 [64]
    注: NA表示文献中没有给出具体数值; FF表示填充因子.
    下载: 导出CSV

    表 2  钙钛矿中常用离子有效半径[56,72]

    Table 2.  Effective radius of commonly used ions in perovskite[56,72].

    序号钙钛矿中常用离子有效半径R/pm
    1胍离子(GA+)278
    2二甲胺离子(DMA+)272
    3甲脒离子(FA+)253
    4甲胺离子(MA+)217
    5铯离子(Cs+)167
    6铷离子(Rb+)152
    7钾离子(K+)138
    8钠离子(Na+)102
    9铅离子(Pb2+)119
    10锡离子(Sn2+)112
    11碘离子(I)220
    12溴离子(Br)196
    13氯离子(Cl)181
    下载: 导出CSV

    表 3  近年来典型的2T钙钛矿/硅TSCs的详细性能参数总结

    Table 3.  Summary of detailed performance of typical 2T perovskite/silicon TSCs in recent years.

    Type Perovskite Eg/eV VOC/V Jsc/mA·cm–2 FF/% PCE/% Year Area/cm2 Ref.
    N-I-PMAPbI31.611.58011.5075.0013.7020151.00[15]
    FA0.83MA0.17Pb(I0.84Br0.16)31.631.78514.0079.5019.9020160.16[133]
    MAPbI31.601.69215.8079.9021.4020160.17[134]
    MAPbI31.601.70116.1070.1019.2020161.22[134]
    Cs0.19MA0.81PbI31.591.75118.8077.1022.7020180.25[135]
    Cs0.19MA0.81PbI31.591.77916.5074.1021.7020181.43[135]
    Cs0.19FA0.81Pb(I0.78Br0.22)31.631.76916.5065.4019.10201812.96[135]
    MA0.37FA0.48Cs0.15PbI2.01Br0.991.691.70315.2679.2020.5720170.03[136]
    FA0.5MA0.38Cs0.12PbI2.04Br0.961.691.65516.5081.1022.2220180.06[137]
    FA0.75MA0.25 Pb(I0.76B0.24)31.651.71015.4971.0018.8120180.13[138]
    Cs0.08FA0.74MA0.18Pb(I0.88Br0.12)31.651.78017.8275.0023.7320180.13[139]
    Cs0.1(FA0.75MA0.25)0.9Pb(I0.78Br0.22)31.671.83016.7470.0021.3120190.13[133]
    Cs 0.08FA0.69MA0.23Pb(I0.78Br22)31.671.75016.8974.1821.9320190.13[140]
    CsRbFAMAPbI3-xBrx 1.621.76317.8078.1024.5020181.00[132]
    P-I-NCs0.17FA0.83Pb(Br0.17I0.83)31.631.65018.1079.0023.6020171.00[141]
    FA 0.75Cs0.25Pb(I0.8Br0.2)31.681.77018.4077.0025.0020181.00[142]
    Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)31.601.76018.5078.5025.5020180.81[143]
    CsxFA1-xPb(I, Br)31.601.78819.5073.1025.2020181.42[144]
    CsxFA1-x Pb(I, Br)31.601.74119.5074.7025.4020181.42[145]
    Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)31.641.80017.8079.4025.4020180.49[40]
    Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)31.631.79219.0274.6025.4320191.00[146]
    Cs0.1MA0.9Pb(I0.9Br0.1)31.601.82019.2075.3026.202020NA[147]
    Cs 0.25FA0.75Pb(I0.85Br0.15Cl0.05)31.671.89019.1075.3027.0420201.00[44]
    Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)31.681.70019.8077.0025.7020200.83[46]
    (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)31.681.81818.9076.4026.2020201.00[45]
    注: NA表示文献中没有给出具体数值.
    下载: 导出CSV
  • [1]

    Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dou L, Yang Y, You J B, Hong Z, Chang W H, Li G, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J Y, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [6]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z, Ye Q, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [7]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [8]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J Hee, Seok S I 2019 Science 366 749Google Scholar

    [9]

    Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulovic V 2019 Energy Environ. Sci. 12 2192Google Scholar

    [10]

    Liu Y H, Akin S, Pan L F, Uchida R, Grätzel M 2019 Sci. Adv. 5 eaaw2543Google Scholar

    [11]

    Zhu P C, Gu S, Luo X, Gao Y, Li S L, Zhu J, Tan H R 2019 Adv. Energy Mater. 10 1903083Google Scholar

    [12]

    Zheng X P, Hou Y, Bao C X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [13]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [14]

    Beiley Z M, McGehee M D 2012 Energy Environ. Sci. 5 9173Google Scholar

    [15]

    Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [16]

    Albrecht S, Saliba M, Correa Baena J P, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [17]

    Altazin S, Stepanova L, Werner J, Niesen B, Ballif C, Ruhstaller B 2018 Opt. Express 26 A579Google Scholar

    [18]

    Fang Z M, Wang S Z, Yang S F, Ding L M 2018 Inorg. Chem. Front. 5 1690Google Scholar

    [19]

    Hu W P, He X, Fang Z M, Lian W T, Shang Y B, Li X C, Zhou W R, Zhang M M, Chen T, Lu Y L, Zhang L J, Ding L M, Yang S F 2020 Nano Energy 68 104362Google Scholar

    [20]

    Jia X, Ding L M 2018 Sci. China Mater. 62 54Google Scholar

    [21]

    Zuo C T, Ding L M 2017 Angew. Chem. Int. Ed. 56 6528Google Scholar

    [22]

    Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar

    [23]

    Hu J N, Cheng Q, Fan R D, Zhou H P 2017 Sol. RRL 1 1700045Google Scholar

    [24]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [25]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [26]

    Al-Ashouri A, Magomedov A, Roß M, et al. 2019 Energy Environ. Sci. 12 3356Google Scholar

    [27]

    Kim D H, Muzzillo C P, Tong J, et al. 2019 Joule 3 1734Google Scholar

    [28]

    Lin R, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [29]

    McMeekin D P, Mahesh S, Noel N K, Klug M T, Lim J, Warby J H, Ball J M, Herz L M, Johnston M B, Snaith H J 2019 Joule 3 387Google Scholar

    [30]

    Xue Q F, Xia R X, Brabec C J, Yip H L 2018 Energy Environ. Sci. 11 1688Google Scholar

    [31]

    Henemann A 2008 Renew. Energy Focus 9 14Google Scholar

    [32]

    Shi B, Duan L R, Zhao Y, Luo J S, Zhang X D 2020 Adv. Mater. 32 1806474Google Scholar

    [33]

    Park S, Chang W J, Lee C W, Park S, Ahn H Y, Nam K T 2016 Nat. Energy 2 16185Google Scholar

    [34]

    陈为, 魏伟, 孙予罕 2017 中国科学: 化学 47 1251Google Scholar

    Chen W, Wei W, Sun Y H 2017 Sci. China: Chem. 47 1251Google Scholar

    [35]

    Hu M, Bi C, Yuan Y B, Bai Y, Huang J S 2016 Adv. Sci. 3 1500301Google Scholar

    [36]

    Lin Y Z, Chen B, Zhao F W, Zheng X P, Deng Y H, Shao Y C, Fang Y J, Bai Y, Wang C R, Huang J S 2017 Adv. Mater. 29 1700607Google Scholar

    [37]

    Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar

    [38]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [39]

    Chen C, Song Z N, Xiao C X, Zhao D W, Shrestha N, Li C W, Yang G, Yao F, Zheng X L, Ellingson R J, Jiang C S, Al-Jassim M, Zhu K, Fang G J, Yan Y F 2019 Nano Energy 61 141Google Scholar

    [40]

    Chen B, Yu Z S, Liu K, Zheng X P, Liu Y, Shi J W, Spronk D, Rudd P N, Holman Z, Huang J S 2019 Joule 3 177Google Scholar

    [41]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip L P, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [42]

    Liu C, Yang Y Z, Zhang C L, Wu S H, Wei L Y, Guo F, Arumugam G M, Hu J L, Liu X Y, Lin J, Schropp R E L, Mai Y H 2020 Adv. Mater. 32 1907361Google Scholar

    [43]

    Palmstrom A F, Eperon G E, Leijtens T, et al. 2019 Joule 3 2193Google Scholar

    [44]

    Xu J X, Boyd C C, Yu Z J, et al. 2020 Science 367 1097Google Scholar

    [45]

    Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C X, Kim J, Tong J H, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H, Shin B 2020 Science 368 155Google Scholar

    [46]

    Ye J Y, Tong J H, Hu J, et al. 2020 Sol. RRL 4 2000082Google Scholar

    [47]

    Duong T, Wu Y L, Shen H P, et al. 2017 Adv. Energy Mater. 7 1700228Google Scholar

    [48]

    Yang M J, Kim D H, Yu Y, Li Z, Reid O G, Song Z N, Zhao D W, Wang C L, Li L W, Meng Y, Guo T, Yan Y F, Zhu K 2018 Mater. Today Energy 7 232Google Scholar

    [49]

    Zhou Y, Wang F, Cao Y, Wang J P, Fang H H, Loi M A, Zhao N, Wong C P 2017 Adv. Energy Mater. 7 1701048Google Scholar

    [50]

    Yu Y, Wang C L, Grice C R, Shrestha N, Zhao D W, Liao W Q, Guan L, Awni R A, Meng W W, Cimaroli A J, Zhu K, Ellingson R J, Yan Y F 2017 ACS Energy Lett. 2 1177Google Scholar

    [51]

    Zhou Y, Jia Y H, Fang H H, Loi M A, Xie F Y, Gong L, Qin M C, Lu X H, Wong C P, Zhao N 2018 Adv. Funct. Mater. 28 1803130Google Scholar

    [52]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, et al. 2018 Nature 555 497Google Scholar

    [53]

    Kim J, Saidaminov M I, Tan H R, et al. 2018 Adv. Mater. 30 1706275Google Scholar

    [54]

    Duong T, Pham H, Kho T H, et al. 2019 Adv. Energy Mater. 10 1903553Google Scholar

    [55]

    Tan H R, Che F L, Wei M Y, Zhao Y C, Saidaminov M I, Petar T, Danny B, Grant W, Tan F R, Zhuang T T 2018 Nat. Commun. 9 3100Google Scholar

    [56]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [57]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [58]

    Zhuang J, Mao P, Luan Y G, Yi X H, Tu Z Y, Zhang Y Y, Yi Y P, Wei Y Z, Chen N L, Lin T, Wang F Y, Li C, Wang J Z 2019 ACS Energy Lett. 4 2913Google Scholar

    [59]

    Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. 2019 Adv. Energy Mater. 9 1803699Google Scholar

    [60]

    Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B 2018 Nat. Commun. 9 2225Google Scholar

    [61]

    Zhang J, Bai D L, Jin Z W, Bian H, Wang K, Sun J, Wang Q, Liu S Z F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [62]

    Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [63]

    Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B 2019 Adv. Mater. 1 1905143Google Scholar

    [64]

    Xiao Q, Tian J J, Xue Q F, Wang J, Xiong B J, Han M M, Li Z, Zhu Z L, Yip H L, Li Z 2019 Angew. Chem. Int. Ed. 58 17724Google Scholar

    [65]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [66]

    Kim H S, Im S H, Park N G 2014 J. Phys.Chem. C 118 5615Google Scholar

    [67]

    Li Z, Yang M J, Park J S, Wei S H, Berry J, Zhu K 2015 Chem. Mater. 28 284Google Scholar

    [68]

    Chang Y H, Park C H 2004 J. Korean Phys. Soc. 44 889

    [69]

    Anaya M, Correabaena J P, Lozano G L, Saliba M, Anguita P, Roose B, Abate A, Steiner U, Grätzel M, Calvo M 2016 J. Mater. Chem. A 4 11214Google Scholar

    [70]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [71]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [72]

    Saliba M, Correa-Baena J P, Grätzel M, Hagfeldt A, Abate A 2017 Angew. Chem. Int. Ed. 57 2554Google Scholar

    [73]

    Unger E L, Bowring A R, Tassone C J, Pool V L, Gold-Parker A, Cheacharoen R, Stone K H, Hoke E T, Toney M F, McGehee M D 2014 Chem. Mater. 26 7158Google Scholar

    [74]

    Dong Q, Yuan Y B, Shao Y C, Fang Y J, Wang Q, Huang J S 2015 Energy Environ. Sci. 8 2464Google Scholar

    [75]

    Lee B, Hwang T, Lee S, Shin B, Park B 2019 Sci. Rep. 9 4803Google Scholar

    [76]

    Zhang C P, Li Z P, Liu J, Xin Y C, Shao Z P, Cui G, Pang S P 2018 ACS Energy Lett. 3 1801Google Scholar

    [77]

    Ma T, Wang S W, Zhang Y W, Zhang K X, Yi L X 2020 J. Mater. Sci. 55 464Google Scholar

    [78]

    Tong G, Ono L K, Qi Y B 2019 Energy Technol. 8 1900961Google Scholar

    [79]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [80]

    Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699Google Scholar

    [81]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [82]

    Mahesh S, Ball J M, Oliver R D J, McMeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [83]

    Levine I, Vera O G, Kulbak M, Ceratti D-R, Rehermann C, Márquez J A, Levcenko S, Unold T, Hodes G, Balberg I, Cahen D, Dittrich T 2019 ACS Energy Lett. 4 1150Google Scholar

    [84]

    Song Z, Chen C, Li C, Awni R A, Zhao D, Yan Y 2019 Semicond. Sci. Technol. 34 093001Google Scholar

    [85]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [86]

    Slotcavage D J, Karunadasa H I, McGehee M D 2016 ACS Energy Lett. 1 1199Google Scholar

    [87]

    Yun J S, Seidel J, Kim J, Soufiani A M, Huang S, Lau J, Jeon N J, Seok S I, Green M A, Ho-Baillie A 2016 Adv. Energy Mater. 6 1600330Google Scholar

    [88]

    Beal R E, Hagström N Z, Barrier J, Gold-Parker A, Prasanna R, Bush K A, Passarello D, Schelhas L T, Brüning K, Tassone C J, Steinrück H G, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [89]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [90]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204Google Scholar

    [91]

    Liu S, Guan Y J, Sheng Y S, Hu Y, Rong Y G, Mei A Y, Han H W 2020 Adv. Energy Mater. 10 1902492Google Scholar

    [92]

    Gao F, Zhao Y, Zhang X W, You J B 2020 Adv. Energy Mater. 10 1902650Google Scholar

    [93]

    Han J H, Luo S P, Yin X W, Zhou Y, Nan H, Li J B, Li X, Oron D, Shen H P, Lin H 2018 Small 14 1801016Google Scholar

    [94]

    Bai S, Da P M, Li C, Wang Z P, Yuan Z C, Fu F, Kawecki M, Liu X J, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [95]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 16142Google Scholar

    [96]

    Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar

    [97]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [98]

    Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 12 4712Google Scholar

    [99]

    Kubicki D, Prochowicz D, Hofstetter A, Saski M, Yadav P, Bi D, Pellet N, Lewiński J, Zakeeruddin S M, Grätzel M 2018 J. Mater. Chem. A 140 3345Google Scholar

    [100]

    Jodlowski A D, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin M K 2017 Nat. Energy 2 972Google Scholar

    [101]

    Chen H, Wei Q, Saidaminov M I, Wang F, Johnston A, Hou Y, Peng Z J, Xu K M, Zhou W J, Liu Z H, Qiao L, Wang X, Xu S W, Li J Y, Long R, Ke Y Q, Sargent E H, Ning Z J 2019 Adv. Mater. 31 e1903559Google Scholar

    [102]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [103]

    Yu H, Wang F, Xie F Y, Li W W, Chen J, Zhao N 2014 Adv. Funct. Mater. 24 7102Google Scholar

    [104]

    Chae J S, Dong Q F, Huang J S, Centrone A 2015 Nano Lett. 15 8114Google Scholar

    [105]

    Gao C, Liu J, Liao C, Ye Q Y, Zhang Y Z, He X L, Guo X W, Mei J, Lau W 2015 RSC Adv. 5 26175Google Scholar

    [106]

    Xie Y L, Yu H Y, Duan J S, Xu L, Hu B 2020 ACS Appl. Mater. Interfaces 12 11190Google Scholar

    [107]

    Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar

    [108]

    Heo D Y, Lee T H, Iwan A, Kavan L, Omatova M, Majkova E, Kamarás K, Jang H W, Kim S Y 2020 J. Power Sources 458 228067Google Scholar

    [109]

    Tong J H, Song Z N, Kim D H, et al. 2019 Science 364 475Google Scholar

    [110]

    Tang G, Yang C, Stroppa A, Fang D N, Hong J W 2017 J. Chem. Phys. 146 224702Google Scholar

    [111]

    Ke W J, Xiao C X, Wang C L, et al. 2016 Adv. Mater. 28 5214Google Scholar

    [112]

    Xu J X, Buin A, Ip A H, et al. 2015 Nat. Commun. 6 7081Google Scholar

    [113]

    Liang P W, Chueh C C, Williams S T, Jen A K Y 2015 Adv. Energy Mater. 5 1402321Google Scholar

    [114]

    Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F 2017 Nano Energy 41 84Google Scholar

    [115]

    Fang Y J, Bi C, Wang D, Huang J S 2017 ACS Energy Lett. 2 782Google Scholar

    [116]

    Cui C H, Li Y W, Li Y F 2017 Adv. Energy Mater. 7 1601251Google Scholar

    [117]

    Lee J W, Park N G 2019 Adv. Energy Mater. 10 1903249Google Scholar

    [118]

    Lee J W, Kim H S, Park N G 2016 Acc. Chem. Res. 49 311Google Scholar

    [119]

    Xue D J, Hou Y, Liu S C, Wei M, Chen B, Huang Z, Li Z, Sun B, Proppe A H, Dong Y, Saidaminov M I, Kelley S O, Hu J S, Sargent E H 2020 Nat. Commun. 11 1514Google Scholar

    [120]

    Jan S, Robby P, Rolf B 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [121]

    Luo D Y, Yang W Q, Wang Z P, et al. 2018 Science 360 1442Google Scholar

    [122]

    Bu X N, Westbrook R J E, Lanzetta L, Ding D, Chotchuangchutchaval T, Aristidou N, Haque S A 2019 Sol. RRL 3 1800282Google Scholar

    [123]

    Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S 2017 Joule 1 371Google Scholar

    [124]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [125]

    Elgamel H E, Barnett A M, Rohatgi A, Chen Z, Vinckier C, Nijs J, Mertens R 1995 J. Appl. Phys. 78 3457Google Scholar

    [126]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [127]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [128]

    Bian H, Bai D L, Jin Z W, Wang K, Liang L, Wang H R, Zhang J R, Wang Q, Liu S Z F 2018 Joule 2 1500Google Scholar

    [129]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [130]

    Zhao D W, Ding L M 2020 Sci. Bull. 65 1144Google Scholar

    [131]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [132]

    Shen H P, Omelchenko S T, Jacobs D A, et al. 2018 Sci. Adv. 4 eaau9711Google Scholar

    [133]

    Hou F H, Yan L L, Shi B, et al. 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [134]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, De Wolf S, Niesen B, Ballif C 2016 J. Phys. Chem. Lett. 7 161Google Scholar

    [135]

    Sahli F, Kamino B A, Werner J, et al. 2018 Adv. Energy Mater. 8 1701609Google Scholar

    [136]

    Fan R D, Z N, Zhang L, Yang R, Meng Y, Li L W, Guo T, Chen Y H, Xu Z Q, Zheng G H J, Huang Y, Li L, Qin L, Qiu X H, Chen Q, Zhou H P 2017 Sol. RRL 1 1700149Google Scholar

    [137]

    Qiu Z W, Xu Z Q, Li N X, Zhou N, Chen Y H, Wan X X, Liu J L, Li N, Hao X T, Bi P Q, Chen Q, Cao B Q, Zhou H P 2018 Nano Energy 53 798Google Scholar

    [138]

    Zhu S J, Y X, Ren Q S, et al. 2018 Nano Energy 45 280Google Scholar

    [139]

    Zhu S J, Hou F H, Huang W, et al. 2018 Sol. RRL 2 1800176Google Scholar

    [140]

    Hou F H, Han C, Isabella O, et al. 2019 Nano Energy 56 234Google Scholar

    [141]

    Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar

    [142]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H-P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [143]

    Marko Jošt, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B, Albrecht S 2018 Energy Environ. Sci. 11 3511Google Scholar

    [144]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [145]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [146]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [147]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [148]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [149]

    Li Z, Xiao C X, Yang Y, et al. 2017 Energy Environ. Sci. 10 1234Google Scholar

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [3] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池. 物理学报, 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [5] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [6] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [7] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [8] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [9] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [12] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [13] 宁利中, 齐昕, 余荔, 周洋. 混合流体Rayleigh-Benard行波对流中的缺陷结构. 物理学报, 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [14] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [15] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [16] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [17] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [18] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 物理学报, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  33126
  • PDF下载量:  1353
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-26
  • 上网日期:  2020-10-15
  • 刊出日期:  2020-10-20

/

返回文章
返回