-
高温高压原位中子衍射探测手段对凝聚态物理、晶体化学、地球物理以及材料科学与工程等领域的研究均有重要的意义. 本文基于中国绵阳研究堆(China Mianyang Research Reactor, CMRR)的高压中子衍射谱仪(凤凰)和1500 kN的PE型两面顶压机, 设计了一套应用于高温高压原位中子衍射实验的组装, 并利用中子衍射技术进行了实验验证及温度、压力标定. 通过对组装在高温高压下的流变控制、绝热绝缘性能提高、有效样品体积最大化等方面的优化, 获得了11.4 GPa, 1773 K高温高压条件下的中子衍射谱. 该组装的成功研制使CMRR高温高压中子衍射平台的指标得到明显提升. 同时, 对进一步提高PE型两面顶压机高温高压加载条件、扩展PE型压机在高温高压原位中子衍射领域的的应用范围, 具有重要的意义.High-pressure and high-temperature(high-P-T) in-situ neutron diffraction detection method is a field of growing interest, in particular, for its numerous applications in the field of condensed matter physics, crystal chemistry, geophysics, materials science and engineering. In this work, we design and optimize a set of assembly for high-P-T in-situ neutron diffraction experiment in neutron source of China by using Paris-Edinburgh(PE)-type press. The high-P-T experiment is carried out with a high-pressure neutron diffraction spectrometer (Phoenix) of China Mianyang Research Reactor (CMRR). A 1500 KN uniaxial loading system and a 1500 W constant current source provides extreme conditions of high-P-T for PE press. The toroidal anvil we use is made of tungsten carbide. We use two types of gaskets: one is machined from the null-scattering TiZr alloy and the other is made from the thermal insulation ceramic material of ZrO2. High-temperature furnace is formed by graphite. First, a simplified simulation analyses of the pressure change rates in different areas of the entire assembly are carried out, and it is concluded that the gasket I, II, III areas are designed with a gradient decreasing method. The compression ratio of the sample chamber is significantly improved. Then when the gasket reaches the same compression ratio, the cell pressure will be higher than the pressure before optimization. After that, we conduct experimental verification on the optimized design. Through a series of optimization experiments for assembly on the rheological control of gasket, the improvement of thermal insulation performance and the maximization of effective sample volume under high-P-T, the key technical indicators and design scheme of the high-P-T in-situ neutron diffraction platform are verified. The temperature and pressure in the sample cavity are calibrated by using the MgO's high-P-T in-situ neutron diffraction spectrum and equation of state. The in-situ neutron diffraction sample cavity environment of the designed platform can reach the conditions of 11.4 GPa and 1773 K. The successful development of this assembly greatly improves the experimental conditions of CMRR high-P-T neutron diffraction platform. At the same time, it has important reference significance for further improving the high-P-T loading conditions of the PE-type press and expanding the application scope of the PE-type press.
-
Keywords:
- in-situ neutron diffraction /
- high pressure and high temperature /
- China Mianyang Research Reactor
[1] Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar
[2] Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303
[3] Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar
[4] Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar
[5] Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar
[6] Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar
[7] Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar
[8] He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar
[9] Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar
[10] Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar
[11] Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar
[12] Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar
[13] Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[14] Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar
[15] Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar
[16] Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar
[17] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar
Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar
[18] Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar
[19] Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar
[20] Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar
[21] Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar
-
图 2 (a)单凹曲面压砧; (b)实验前组装元件实物图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔
Fig. 2. (a) or ① Optical picture of the single toroidal tungsten carbide anvil; (b) pictures of the high-pressure and high-temperature cell assemblies: ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.
图 4 优化后压砧和高温高压样品组装结构的 (a)立体示意图与(b)截面示意图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔
Fig. 4. Schematic diagram of (a)three dimensional and (b)sectional of the high pressure and high temperature cell assembly: ① single toroidal tungsten carbide anvil; ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.
图 7 800 kN加载下, 高温高压原位中子衍射谱与数据分析 (a)不同输入功率下MgO的中子衍射谱; (b)样品腔温度和加热输入功率关系曲线
Fig. 7. High pressure and high temperature neutron diffraction patterns under 800 kN loading force and data analysis: (a) Neutron diffraction patterns of MgO at different heating power; (b) sample/cell temperature-heating power curve.
表 1 实验前后密封垫I, II, III区域的厚度和不同加载力下对应的样品腔压力
Table 1. Thickness of gasket I, II, III zoom before and after compression, and cell pressures under different loading force.
Before compression After compression Pressure/GPa No. I II III I II III 300 kN 500 kN 800 kN #1 5.1 2.0 2.9 4.3 1.1 2.1 2.0 2.9 Anvil broken #2 6.0 2.5 3.4 4.0 1.3 2.8 2.8 4.8 11.4 表 2 不同系统加载力及加热输入功率下对应MgO样品的晶胞参数、样品腔压力与温度
Table 2. Cell parameters, pressure and temperature of MgO under different loading force and heating power.
Load /kN Power/W MgO a/Å V/Å3 V/V0 P/GPa T/K 0 0 4.226 75.42 1 0.1 300 300 0 4.202 74.22 0.984 2.8 ± 0.3 300 500 0 4.186 73.39 0.973 4.8 ± 0.4 300 800 0 4.14 70.83 0.939 11.4 ± 0.9 300 800 200 4.178 72.92 0.967 11.4 1197 ± 117 800 315 4.189 73.48 0.974 11.4 1406 ± 117 800 530 4.208 74.52 0.988 11.4 1773 ± 117 -
[1] Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar
[2] Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303
[3] Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar
[4] Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar
[5] Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar
[6] Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar
[7] Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar
[8] He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar
[9] Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar
[10] Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar
[11] Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar
[12] Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar
[13] Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[14] Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar
[15] Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar
[16] Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar
[17] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar
Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar
[18] Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar
[19] Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar
[20] Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar
[21] Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar
计量
- 文章访问数: 6685
- PDF下载量: 131
- 被引次数: 0