-
金刚石氮-空位色心结构因在量子精密测量领域的高灵敏度优势而备受关注. 本文引入耦合声子场对氮-空位色心原子自旋进行共振调控, 以提高氮-空位色心的自旋跃迁效率. 首先, 基于波函数和晶格的点阵位移矢量关系, 分析了声子与晶格能量交互作用, 研究了基于声子共振调控的氮-空位色心的自旋跃迁机理, 建立了基于应变诱导的能量转移声子-自旋交互耦合激发模型. 其次, 基于氮-空位色心晶格振动理论, 引入满足布洛赫定理的系数矩阵, 建立了不同轴向氮-空位色心第一布里渊区特征区域的声子谱模型. 同时, 基于德拜模型, 考虑热膨胀效应, 解析该声子共振系统的声子热平衡性质, 并对其比热模型进行研究. 最后, 基于分子动力学仿真软件CASTEP和密度泛函理论进行第一性原理研究, 构建了声子模式下不同轴向氮-空位色心的结构优化模型, 并分析了其结构特性、声子特性和热力学特性. 研究结果表明, 系统声子模式的演化依赖于氮-空位的占位, 声子模式强化伴随着热力学熵的降低. 含氮-空位色心金刚石的共价键较纯净无缺陷金刚石更弱, 热力学性质更不稳定. 含氮-空位色心金刚石的声子主共振频段处于THz量级, 次共振频率约为[800,1200] MHz. 根据次共振频段设计叉指宽度为1.5 μm的声表面波共振机构, 其中心频率约为930 MHz. 在该声子共振调控参数条件下, 声子共振调控方法可有效增大氮-空位色心的自旋跃迁概率, 实现氮-空位色心原子自旋操控效率的提高.The nitrogen-vacancy center structure of diamond has attracted widespread attention due to its high sensitivity in quantum precision measurement. In this paper, a coupled phonon field is used to resonantly regulate the atomic spins of the nitrogen-vacancy center for improving the spin transition efficiency. Firstly, the interaction between phonons and lattice energy is analyzed based on the relationship between the wave function and the lattice displacement vector. The spin transition mechanism is investigated based on phonon resonance regulation, and the strain-induced energy transferable phonon-spin interaction coupling excitation model is established. Secondly, the coefficient matrix satisfying Bloch’s theorem is adopted to develop the phonon spectrum model of the first Brillouin zone characteristic region for different axial nitrogen-vacancy centers. Considering the thermal expansion, the thermal balance properties of phonon resonance system are analyzed and its specific heat model is studied based on the Debye model. Finally, the structure optimization model of different axial nitrogen-vacancy centers under the phonon model is built up based on the molecular dynamics simulation software CASTEP and density functional theory for first-principles research. The structural characteristics, phonon characteristics, and thermodynamic properties of nitrogen-vacancy centers are analyzed. The research results show that the evolution of phonon mode depends on the occupation of the nitrogen-vacancy center. A decrease in thermodynamic entropy accompanies the strengthening of the phonon mode. The covalent bond of diamond with nitrogen-vacancy center is weaker than that of a defect-free diamond. The thermodynamic properties of a defect-free diamond are more unstable. The primary phonon resonance frequency of diamond with nitrogen-vacancy centers are on the order of THz, and the secondary phonon resonance frequency is about in a range of 800 and 1200 MHz. A surface acoustic wave resonance mechanism with an interdigital width of 1.5 μm is designed according to the secondary resonance frequency, and its center frequency is about 930 MHz. The phonon resonance control method can effectively increase the spin transition probability of nitrogen-vacancy center under suitable phonon resonance control parameters, and thus realizing the increase of atomic spin manipulation efficiency.
-
Keywords:
- nitrogen-vacancy center /
- phonon coupling /
- atomic spin /
- resonance manipulation
[1] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar
[2] Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar
[3] Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar
[4] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar
[5] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[6] Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar
[7] Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar
[8] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 16 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar
[9] Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar
[10] Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar
[11] Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar
[12] Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar
[13] Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar
[14] Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar
[15] Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar
[16] Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar
[17] Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar
[18] Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar
[19] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar
[20] Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar
[21] Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar
[22] Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar
[23] Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar
[24] Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar
[25] Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar
[26] Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar
[27] Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar
[28] McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar
[29] Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar
[30] Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar
[31] Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar
[32] Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar
[33] MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar
[34] Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar
[35] Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar
[36] MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar
[37] Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar
[38] MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar
[39] Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar
[40] Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar
[41] Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar
[42] Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar
[43] Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar
[44] Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar
[45] Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar
[46] Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar
[47] 成泰民, 鲜于泽 2006 物理学报 55 4828Google Scholar
Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar
[48] Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar
[49] 玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页
Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)
[50] 蒋文灿, 陈华, 张伟斌 2016 物理学报 12 126301Google Scholar
Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar
[51] Fincham D 1994 Mol. Simul. 13 1Google Scholar
-
图 4 (a)声子场共振结构示意图; (b)声子场共振调控机理示意图[48]
Fig. 4. (a) Schematic diagram of phonon field resonance structure; (b) mechanism diagram of phonon field resonance control.
图 7 不同轴向NV色心金刚石的带隙特征 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向
Fig. 7. Band gap characteristics for the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].
图 9 不同轴向NV色心金刚石的声子谱 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向
Fig. 9. Phonon spectrum curves of the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].
表 1 不同轴向NV色心的晶格动力学矩阵元的不对称关系
Table 1. Asymmetrical relations of lattice dynamics matrix elements for NV centers of different axes.
NV色心轴向 晶格动力学矩阵元不对称关系 NV色心轴向 晶格动力学矩阵元不对称关系 无NV色心 $\left\{ \begin{aligned}&{ {D_{xy} }\left( {{q} } \right) = {D_{yx} }\left( {{q} } \right)}\\&{ {D_{yz} }\left( {{q} } \right) = {D_{zy} }\left( {{q} } \right)}\\&{ {D_{xz} }\left( {{q} } \right) = {D_{zx} }\left( {{q} } \right)}\end{aligned} \right.$ [–1, 1, –1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[ - 1, 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [1, 1, 1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [–1, –1, 1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[ - 1, - 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [1, –1, –1]轴向 $\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, - 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ 表 2 [1, 1, 1]轴向NV色心金刚石布里渊区特征线的声子谱解析结果
Table 2. Phonon spectrum analysis results at the characteristic line of the Brillouin zone in the diamond with the NV center of [1, 1, 1] axis.
特征线 声子谱波矢条件 声子谱函数 极化向量 Λ 线 $ {{q}}_{{x}}={{q}}_{y}={{q}}_{{z}}={q} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } + {2}{B} _ {[1, 1, 1]} ^ {\varLambda }} \\ &{\omega }_{2}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } } \\ &{\omega }_{3}=\sqrt{ { {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({-}\frac{1}{\sqrt{{6}}}{, -}\frac{1}{\sqrt{{6}}}, \frac{\sqrt{{6}}}{3}\right)\end{aligned}\right. $ $ \varDelta $线
(ΓF 线)
(ZQ 线)$ {{q}}_{{x}}={{q}}_{{z}}{=0} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{[1, 1, 1]}^{\varDelta }+{ {B} }_{[1, 1, 1]}^{\varDelta} }\\ &{\omega }_{2}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta } }\\ &{\omega }_{3}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta} }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 1, 0}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $ Σ 线 ${ {q} }_{ {x} }={ {q} }_{y}={q},$
$ {{q}}_{{z}}= 0 $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{ [1, 1, 1] }^{\varSigma }+{ {B} }_ {[1, 1, 1]} ^ {\varSigma } }\\ &{\omega }_{2}=\sqrt{ { {A} }_{[1, 1, 1]} ^ {\varSigma } {-}{ {B} }_{[1, 1, 1]} ^ {\varSigma } } \\ &{\omega }_{3}=\sqrt{ { {C} }_ {[1, 1, 1]} ^{\varSigma } } \end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $ M 线
(ΓZ 线)
(FQ 线)$ {{q}}_{{x}}={{q}}_{y}={0} $ $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_ {[1, 1, 1]} ^{ {M} }+{ {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{2}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{3}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\end{aligned}\right.$ $ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 0, 1}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 1, 0}\right)\end{aligned}\right. $ 注: $A_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_y}a/2} \right)} \right]$, $B_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( { {q_y}a} \right)} \right]$,
$A_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\{ 3 - 2\cos \left( {qa/2} \right) - \cos \left( {qa} \right) + \left[ {2\eta - 2\eta \cos \left( {qa} \right)} \right]\}$, $B_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {1 - \cos \left( {qa} \right)} \right]$,
$C_{[1, 1, 1]}^\varSigma = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {2 - 2\cos \left( {qa/2} \right)} \right]$, $A_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_z}a/2} \right)} \right]$,
$B_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( {{q_z}a} \right)} \right]$.表 3 [1, 1, 1]轴向NV色心金刚石的声子热平衡温度解析结果
Table 3. Phonon thermal equilibrium temperature analysis results of the diamond with the NV center of [1, 1, 1] axis.
声子极化方向 声子热平衡温度 声子极化方向 声子热平衡温度 $ {\varLambda } $线方向 ${T}_{ {\varLambda } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varLambda } }+{ {2}{B} }_{ {[1, 1, 1]} }^{ {\varLambda } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ $ {\varSigma } $线方向 ${T}_{ {\varSigma } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varSigma } }+{ {B} }_{ {[1, 1, 1]} }^{ {\varSigma } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ $ \varDelta $线方向 ${T}_{\varDelta }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{\varDelta }+{ {B} }_{ {[1, 1, 1]} }^{\varDelta } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ M 线方向 ${T}_{ {M} }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {M} }+{ {B} }_{ {[1, 1, 1]} }^{ {M} } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$ 注: 参数$ {{A}}_{{[1, 1, 1]}}^{{\varLambda }}, {{B}}_{{[1, 1, 1]}}^{{\varLambda }}, {{A}}_{{[1, 1, 1]}}^{\varDelta }, {{B}}_{{[1, 1, 1]}}^{\varDelta } $, $ {{A}}_{{[1, 1, 1]}}^{{\varSigma }}, {{B}}_{{[1, 1, 1]}}^{{\varSigma }}, {{A}}_{{[1, 1, 1]}}^{{M}} $和$ {{B}}_{{[1, 1, 1]}}^{{M}} $同表2. -
[1] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar
[2] Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar
[3] Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar
[4] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar
[5] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[6] Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar
[7] Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar
[8] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 16 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar
[9] Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar
[10] Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar
[11] Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar
[12] Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar
[13] Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar
[14] Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar
[15] Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar
[16] Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar
[17] Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar
[18] Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar
[19] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar
[20] Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar
[21] Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar
[22] Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar
[23] Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar
[24] Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar
[25] Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar
[26] Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar
[27] Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar
[28] McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar
[29] Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar
[30] Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar
[31] Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar
[32] Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar
[33] MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar
[34] Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar
[35] Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar
[36] MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar
[37] Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar
[38] MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar
[39] Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar
[40] Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar
[41] Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar
[42] Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar
[43] Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar
[44] Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar
[45] Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar
[46] Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar
[47] 成泰民, 鲜于泽 2006 物理学报 55 4828Google Scholar
Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar
[48] Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar
[49] 玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页
Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)
[50] 蒋文灿, 陈华, 张伟斌 2016 物理学报 12 126301Google Scholar
Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar
[51] Fincham D 1994 Mol. Simul. 13 1Google Scholar
计量
- 文章访问数: 8385
- PDF下载量: 307
- 被引次数: 0