搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺寸调控SnO2量子点的阻变性能及调控机理

龚少康 周静 王志青 朱茂聪 沈杰 吴智 陈文

引用本文:
Citation:

尺寸调控SnO2量子点的阻变性能及调控机理

龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文

Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs

Gong Shao-Kang, Zhou Jing, Wang Zhi-Qing, Zhu Mao-Cong, Shen Jie, Wu Zhi, Chen Wen
PDF
HTML
导出引用
  • 零维SnO2量子点因具有优异的物理化学稳定性、高电子迁移率和能带结构可调等特性, 是阻变存储器中阻变功能材料的良好选择, 受到了研究者的广泛关注. 本文采用溶剂热法制备了尺寸为2.51 nm, 2.96 nm和3.53 nm的SnO2量子点, 在较小尺寸范围内证明了SnO2量子点能带结构随尺寸离散化的量子尺寸效应; 并基于其量子尺寸效应, 实现了对SnO2量子点阻变存储器开关电压的有效调控. 研究表明, 尺寸为3.53 nm的SnO2量子点具有较低的开关电压(–2.02 V/3.08 V)与较大的阻变开关比(> 104), 器件在经过2 × 104次的耐久性测试后, 阻变性能变化率小于5%, 具有较好的稳定性与保持性. 基于库仑阻塞效应, SnO2量子点内部缺陷势阱作为俘获中心对电子的自俘获/脱俘作用, 是其实现阻变效应的原因; 此外, SnO2量子点与ITO, Au界面肖特基势垒高度的有效控制则是精准调控其阻变开关电压的关键. 以上工作揭示了SnO2量子点在阻变存储领域的巨大应用潜力和商业化应用价值, 为阻变存储器的发展提供了一项新的选择.
    As a non-volatile memory, zero-dimensional quantum dot resistive random access memory (RRAM) has shown broad application prospects in the field of intelligent electronic devices due to its advantages of simple structure, low switching voltage, fast response speed, high storage density, and low power consumption. Tin dioxide quantum dots (SnO2 QDs) are a good option for resistive functional materials with excellent physical and chemical stabilities, high electron mobilities, and adjustable energy band structures. In this paper, the SnO2 QDs with sizes of 2.51 nm, 2.96 nm and 3.53 nm are prepared by the solvothermal method, and the quantum size effect is observed in a small size range and the effective regulation of resistive switching voltage is achieved based on its quantum size effect, which is the unique advantage of quantum dot material in comparison with that of bulk material. Research result shows that as the size of SnO2 QD increases, the SET/RESET voltage gradually decreases from –3.18 V/4.35 V to –2.02 V/3.08 V. The 3.53 nm SnO2 QDs have lower SET/RESET voltage (–2.02 V/3.08 V) and larger resistive switching ratio (> 104), and the resistive switching performance of the device has changed less than 5% after having experienced durability tests 2 × 104 times, showing good stability and retention. Besides, according to the fitting of charge transport mechanism, SnO2 QD RRAM exhibits Ohmic conduction under LRS, while Ohmic conduction, thermionic emission and space charge limit current work together during HRS. The resistive switching effect of SnO2 QDs is controlled by trap filled limit current and interface Schottky Barrier modulation; the trapping/de-trapping behavior of internal defect potential well of SnO2 QDs on electrons dominates the HRS/LRS switching, while the effective control of ITO/SnO2 QDs and SnO2 QDs/Au interface Schottky barrier is the key to accurately regulating the switching voltage. The reason why SnO2 QD RRAM exhibits good size-switching voltage dependence is that the larger SnO2 QD has lower Fermi level and interface Schottky barrier height, so the junction resistance voltage division is reduced, and the SET/RESET voltage decrease accordingly. This work reveals the huge application potential and commercial application value of SnO2 QDs in the field of resistive switching memory, and provides a new option for the development of RRAM.
      通信作者: 周静, zhoujing@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572205, 51802093)、国家重点研发计划(批准号: 2016YFB0303904)、中央高校基本科研业务费(批准号:WUT: 2018III019, 2019IVA108, 2020III021)和湖南省教育厅科学研究项目(批准号: 20B161)资助的课题
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant Nos. 51572205, 51802093), the National Key R&D Program of China (Grant No. 2016YFB0303904), the Fundamental Research Fund for the Central Universities, China (Grant Nos. WUT: 2018III019, 2019IVA108, 2020III021), and the Scientific Research Project of Hunan Education Department, China (Grant No. 20B161)
    [1]

    Chen A 2016 Solid-State Electron. 125 25Google Scholar

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254Google Scholar

    [3]

    Li Y, Chu J, Duan W, Cai G, Fan X, Wang X, Wang G, Pei Y 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [4]

    史晨阳, 闵光宗, 刘向阳 2020 物理学报 69 178702Google Scholar

    Shi C Y, Min G Z, Liu X Y 2020 Acta Phys. Sin. 69 178702Google Scholar

    [5]

    Zhou G, Yang X, Xiao L, Sun B, Zhou A 2019 Appl. Phys. Lett. 114 163506Google Scholar

    [6]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [7]

    Zhou D, Chen F G, Han S, Hu W, Zang Z G, Hu Z P, Li S Q, Tang X S 2018 Ceram. Int. 44 S152Google Scholar

    [8]

    孙劲鹏, 王太宏 2003 物理学报 52 2563Google Scholar

    Sun J P, Wang T H 2003 Acta Phys. Sin 52 2563Google Scholar

    [9]

    Datta S 2013 Quantum Transport: Atom to Transistor (England: Cambridge University Press) pp18, 170, 285

    [10]

    Fan F, Zhang B, Cao Y, Yang X, Gu J, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [11]

    Yan X, Pei Y, Chen H, Zhao J, Zhou Z, Wang H, Zhang L, Wang J, Li X, Qin C, Wang G, Xiao Z, Zhao Q, Wang K, Li H, Ren D, Liu Q, Zhou H, Chen J, Zhou P 2019 Adv. Mater. 31 1805284Google Scholar

    [12]

    Younis A, Chu D, Mihail I, Li S 2013 ACS Appl. Mater. Interfaces 5 9429Google Scholar

    [13]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, Liu K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [14]

    Chen Z, Zhang Y, Yu Y, Cao M, Che Y, Jin L, Li Y, Li Q, Li T, Dai H, Yang J, Yao J 2019 Appl. Phys. Lett. 114 181103Google Scholar

    [15]

    Wang H, Yan X B 2019 Phys. Status Solidi RRL 13 1900073Google Scholar

    [16]

    Banerjee W, Liu Q, Long S B, Lv H B, Liu M 2017 J. Phys. D: Appl. Phys. 50 303002Google Scholar

    [17]

    Hwang B H, Lee J S 2018 Adv. Electron. Mater. 5 1800519

    [18]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306Google Scholar

    [19]

    Chen K Q, Zhou J, Chen W, Zhou P, He F, Liu Y L 2015 Part. Part. Syst. Char. 32 999Google Scholar

    [20]

    Chen D Y, Huang S H, Huang R, Zhang Q, Le T T, Cheng E, Hu Z J, Chen Z W 2018 Mater. Res. Lett. 6 462Google Scholar

    [21]

    Xu Z M, Guan P Y, Younis A, Chu D W, Li S 2017 RSC Adv. 7 56390Google Scholar

    [22]

    Sarkar P K, Bhattacharjee S, Prajapat M, Roy A 2015 RSC Adv. 5 105661Google Scholar

    [23]

    Shaalan N W, Hamad D, Abdel-Latief A Y, Abdel-Rahim M A 2016 Prog. Nat. Sci. 26 145Google Scholar

    [24]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [25]

    Braun D 2010 J. Polym. Sci. Pol. Phys. 41 2622

    [26]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [27]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003Google Scholar

    [28]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [29]

    Anoop G, Kim T Y, Lee H J, Panwar V, Kwak J H, Heo Y J, Yang J H, Lee J H, Jo J Y 2017 Adv. Electron. Mater. 3 1700264Google Scholar

    [30]

    Zhang P, Xu B, Gao C, Chen G L, Gao M Z 2016 ACS Appl. Mater. Interfaces 8 30336Google Scholar

    [31]

    Nieh C H, Lu M L, Weng T M, Chen Y F 2014 Appl. Phys. Lett. 104 1951

    [32]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [33]

    Dash C S, Prabaharan S R S 2019 Rev. Adv. Mater. Sci. 58 248Google Scholar

    [34]

    Jeong J S, Topsakal M, Xu P, Jalan B, Wentzcovitch R M, Mkhoyan K A 2016 Nano Lett. 16 6816Google Scholar

    [35]

    Kumar A, Mukherjee S, Kranti A 2018 J. Phys. D: Appl. Phys. 51 405601Google Scholar

    [36]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2018 J. Alloys Compd. 779 609

    [37]

    Shi H P, Zheng J P, Cheng B C, Zhao J, Su X H, Xiao Y H, Lei S J 2017 J. Mater. Chem. C 5 229Google Scholar

    [38]

    Khan M T, Agrawal V, Almohammedi A, Gupta V 2018 Solid State Electron. 145 49Google Scholar

    [39]

    Mei F, Shen H, Li L B, Zang G Z, Zhou M, Ti R X, Yang D Y, Huang F Z, Lu X M, Zhu J S 2017 Appl. Phys. Lett. 111 143503Google Scholar

    [40]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

  • 图 1  不同反应温度下制备的SnO2 QDs 的TEM图像 (a) 160 ℃; (b) 180 ℃; (c) 200 ℃. 插图分别为对应的SnO2 QDs尺寸分布直方图. 3.53 nm SnO2 QDs的(d)局部HRTEM图像, (e) 选区电子衍射图像与(f) EDS能谱分析

    Fig. 1.  TEM images of SnO2 QDs prepared at (a) 160 ℃, (b) 180 ℃ and (c) 200 ℃. Inset gives the distribution histogram of SnO2 QDs size. (d) Magnified TEM image, (e) SAED pattern and (f) EDS spectrum of 3.53 nm SnO2 QDs.

    图 2  SnO2 QDs的UPS图谱 (a) 2.51 nm; (b) 2.96 nm; (c) 3.53 nm. 插图为费米边、二次电子截止边截距. 不同尺寸SnO2 QDs 的(d) UV-vis光谱, (e) 光学禁带曲线及(f) 能带结构示意图

    Fig. 2.  UPS spectra of (a) 2.51 nm, (b) 2.96 nm and (c) 3.53 nm of SnO2 QDs, and insets shows the Secondary electron cutoff and Fermi edge intercepts. (d) UV-vis absorption spectra, (e) optical band gaps plots and (f) energy band structure of SnO2 QDs with different sizes.

    图 3  (a) ITO与(b) SnO2 QDs薄膜的表面SEM图像. (c) SnO2 QDs RRAM的器件结构示意图及(d) 横截面FESEM图像

    Fig. 3.  Surface SEM picture of (a) ITO and (b) SnO2 QDs film. (c) Device structure schematic diagram of SnO2 QDs RRAM and its (d) cross-sectional FESEM image.

    图 4  (a) 不同尺寸下SnO2 QDs RRAM的I-V特性曲线; (b) SET/RESET电压随SnO2 QDs尺寸的变化曲线; (c) 不同尺寸SnO2 QDs RRAM的循环稳定性曲线, 插图为施加的脉冲电压直方图; (d) 3.53 nm SnO2 QDs RRAM的SET/RESET电压频率分布直方图

    Fig. 4.  (a) I-V curves of SnO2 QDs RRAM with different sizes; (b) variation of SET/RESET voltage with SnO2 QDs size; (c) cycle stability tests of SnO2 QDs RRAM and inset shows the impulse voltage curve; (d) SET/RESET voltage distribution of 3.53 nm SnO2 QDs RRAM.

    图 5  3.53 nm SnO2 QDs RRAM在(a) SET过程, (b) RESET过程的电导机制拟合曲线; 局部区域的电导机制拟合(c) SET过程V1-VSET阶段, (d) RESET过程V2-Vmax阶段

    Fig. 5.  Conduction mechanism fitting curves of (a) SET process and (b) RESET process on 3.53 nm SnO2 QDs RRAM. Local region of conduction mechanism (c) stage of V1-VSET in SET process; (d) stage of V2-Vmax in RESET process.

    图 6  (a) ITO/SnO2 QDs/Au界面势垒模型; 各阶段的阻变行为 (b) 热电子发射区域; (c) SET过程; (d) RESET过程; (e) SCLC区域; (f) RESET阶段热电子发射区域

    Fig. 6.  (a) Schematic diagram of ITO/SnO2 QDs/Au interfacial barrier model and resistive switching behavior in (b) thermionic emission, (c) SET, (d) RESET, (e) SCLC, (f) thermionic emission of RESET process.

  • [1]

    Chen A 2016 Solid-State Electron. 125 25Google Scholar

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254Google Scholar

    [3]

    Li Y, Chu J, Duan W, Cai G, Fan X, Wang X, Wang G, Pei Y 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [4]

    史晨阳, 闵光宗, 刘向阳 2020 物理学报 69 178702Google Scholar

    Shi C Y, Min G Z, Liu X Y 2020 Acta Phys. Sin. 69 178702Google Scholar

    [5]

    Zhou G, Yang X, Xiao L, Sun B, Zhou A 2019 Appl. Phys. Lett. 114 163506Google Scholar

    [6]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [7]

    Zhou D, Chen F G, Han S, Hu W, Zang Z G, Hu Z P, Li S Q, Tang X S 2018 Ceram. Int. 44 S152Google Scholar

    [8]

    孙劲鹏, 王太宏 2003 物理学报 52 2563Google Scholar

    Sun J P, Wang T H 2003 Acta Phys. Sin 52 2563Google Scholar

    [9]

    Datta S 2013 Quantum Transport: Atom to Transistor (England: Cambridge University Press) pp18, 170, 285

    [10]

    Fan F, Zhang B, Cao Y, Yang X, Gu J, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [11]

    Yan X, Pei Y, Chen H, Zhao J, Zhou Z, Wang H, Zhang L, Wang J, Li X, Qin C, Wang G, Xiao Z, Zhao Q, Wang K, Li H, Ren D, Liu Q, Zhou H, Chen J, Zhou P 2019 Adv. Mater. 31 1805284Google Scholar

    [12]

    Younis A, Chu D, Mihail I, Li S 2013 ACS Appl. Mater. Interfaces 5 9429Google Scholar

    [13]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, Liu K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [14]

    Chen Z, Zhang Y, Yu Y, Cao M, Che Y, Jin L, Li Y, Li Q, Li T, Dai H, Yang J, Yao J 2019 Appl. Phys. Lett. 114 181103Google Scholar

    [15]

    Wang H, Yan X B 2019 Phys. Status Solidi RRL 13 1900073Google Scholar

    [16]

    Banerjee W, Liu Q, Long S B, Lv H B, Liu M 2017 J. Phys. D: Appl. Phys. 50 303002Google Scholar

    [17]

    Hwang B H, Lee J S 2018 Adv. Electron. Mater. 5 1800519

    [18]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306Google Scholar

    [19]

    Chen K Q, Zhou J, Chen W, Zhou P, He F, Liu Y L 2015 Part. Part. Syst. Char. 32 999Google Scholar

    [20]

    Chen D Y, Huang S H, Huang R, Zhang Q, Le T T, Cheng E, Hu Z J, Chen Z W 2018 Mater. Res. Lett. 6 462Google Scholar

    [21]

    Xu Z M, Guan P Y, Younis A, Chu D W, Li S 2017 RSC Adv. 7 56390Google Scholar

    [22]

    Sarkar P K, Bhattacharjee S, Prajapat M, Roy A 2015 RSC Adv. 5 105661Google Scholar

    [23]

    Shaalan N W, Hamad D, Abdel-Latief A Y, Abdel-Rahim M A 2016 Prog. Nat. Sci. 26 145Google Scholar

    [24]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [25]

    Braun D 2010 J. Polym. Sci. Pol. Phys. 41 2622

    [26]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [27]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003Google Scholar

    [28]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [29]

    Anoop G, Kim T Y, Lee H J, Panwar V, Kwak J H, Heo Y J, Yang J H, Lee J H, Jo J Y 2017 Adv. Electron. Mater. 3 1700264Google Scholar

    [30]

    Zhang P, Xu B, Gao C, Chen G L, Gao M Z 2016 ACS Appl. Mater. Interfaces 8 30336Google Scholar

    [31]

    Nieh C H, Lu M L, Weng T M, Chen Y F 2014 Appl. Phys. Lett. 104 1951

    [32]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [33]

    Dash C S, Prabaharan S R S 2019 Rev. Adv. Mater. Sci. 58 248Google Scholar

    [34]

    Jeong J S, Topsakal M, Xu P, Jalan B, Wentzcovitch R M, Mkhoyan K A 2016 Nano Lett. 16 6816Google Scholar

    [35]

    Kumar A, Mukherjee S, Kranti A 2018 J. Phys. D: Appl. Phys. 51 405601Google Scholar

    [36]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2018 J. Alloys Compd. 779 609

    [37]

    Shi H P, Zheng J P, Cheng B C, Zhao J, Su X H, Xiao Y H, Lei S J 2017 J. Mater. Chem. C 5 229Google Scholar

    [38]

    Khan M T, Agrawal V, Almohammedi A, Gupta V 2018 Solid State Electron. 145 49Google Scholar

    [39]

    Mei F, Shen H, Li L B, Zang G Z, Zhou M, Ti R X, Yang D Y, Huang F Z, Lu X M, Zhu J S 2017 Appl. Phys. Lett. 111 143503Google Scholar

    [40]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

  • [1] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [2] 管丹丹, 贾金锋. 中国的表面物理. 物理学报, 2023, 72(23): 236801. doi: 10.7498/aps.72.20231858
    [3] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [5] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [6] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰. 非铅卤素钙钛矿及其阻变性能研究进展. 物理学报, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [7] 张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮. 氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响. 物理学报, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [8] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] 霍大云, 石震武, 张伟, 唐沈立, 彭长四. InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究. 物理学报, 2017, 66(6): 068501. doi: 10.7498/aps.66.068501
    [10] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [11] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [13] 廖开升, 李志锋, 李梁, 王超, 周孝好, 戴宁, 李宁. 阻挡杂质带红外探测器中的界面势垒效应. 物理学报, 2015, 64(22): 227302. doi: 10.7498/aps.64.227302
    [14] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [15] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [16] 王瑾, 张茹. 基于量子尺寸效应的InP纳米内包层光纤研制及放大性. 物理学报, 2009, 58(3): 1857-1862. doi: 10.7498/aps.58.1857
    [17] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能. 物理学报, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [18] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池. 物理学报, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [19] 杨盛谊, 王振家, 陈晓红, 侯延冰, 董金凤, 徐叙. 高场下界面势垒对双层有机器件复合发光的影响. 物理学报, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
    [20] 解文方, 陈传誉. 量子点电子态的尺寸效应和磁场的影响. 物理学报, 1998, 47(1): 102-106. doi: 10.7498/aps.47.102
计量
  • 文章访问数:  3690
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-31
  • 上网日期:  2021-09-22
  • 刊出日期:  2021-10-05

/

返回文章
返回