-
目前, 低维材料是热电领域研究的热点, 因为块体材料低维化后热电性能会得到显著的改善. 块体材料低维化有很多方法, 本文基于半导体微加工和聚焦离子束技术制备了尺寸可控的Si微/纳米带, 并通过微悬空结构详细研究了不同尺寸Si微/纳米带的热电性能. 实验发现: 随着Si微/纳米带宽度的减小, 材料的热导率发生了显著的降低, 从体硅的148 W/(m·K)降低到17.75 W/(m·K)(800 nm); 材料的Seebeck系数低于相应的体Si值. 热导率的降低主要来源于声子边界散射的增加, 这显著抑制了Si材料中声子的传输行为, 从而影响热能的传输和转换. 在373 K时, 800 nm宽的Si微/纳米带的ZT值约达到了0.056, 与体硅相比增大了约6倍. 聚焦离子束加工技术为将来Si材料提高热电性能提供了新的制备方案, 这种技术也可以应用于其他材料低维化的制备.
Currently, low-dimensional materials are a hot spot in the field of thermoelectric research, because the thermoelectric properties will be significantly improved after the low-dimensionalization of bulk materials. In a bulk material, its thermoelectric figure of merit ZT value cannot be increased by changing a single parameter, because the parameters of the material are interrelated to each other, which is not conducive to the research of internal factors and thus limiting the efficiency of thermoelectric material, but thermoelectric material on a micro-nano scale is more flexible to adjust its thermoelectric figure of merit ZT value. There are many different kinds of methods of implementing the low-dimensionalization of bulk materials. In this paper, size-controllable Si micro/nanobelts are prepared based on semiconductor micromachining and focused ion beam (FIB) technology, and the thermoelectric properties of Si micro/nanobelts of different sizes are comprehensively studied by the micro-suspension structure method. In this experiment, we find that the conductivity of doped Si micro/nanobelt is significantly better than that of bulk Si material, that as the width of the Si micro/nanobelt decreases, the thermal conductivity of the material decreases significantly, from 148 W/(m·K) of bulk silicon to 17.75 W/(m·K) of 800 nm wide Si micro-nanobelt, that the Seebeck coefficient of the material is lower than that of the corresponding bulkmaterials. The decrease of thermal conductivity is mainly due to the boundary effect caused by the size reduction, which leads the phonon boundary scattering to increase, and thus significantly inhibiting the behavior of phonon transmission in the Si material, thereby further affecting the transmission and conversion of thermal energy in the material. At 373 K, the maximum ZT value of the 800 nm wide Si micro/nanobelt reaches ~0.056, which is about 6 times larger than that of bulk silicon. And as the width of the Si micronanobelt is further reduced, the thermoelectric figure of merit ZT value will be further improved, making Si material an effective thermoelectric material. The FIB processing technology provides a new preparation scheme for improving the thermoelectric performances of Si materials in the future, and this manufacturing technology can also be applied to the low-dimensional preparation of other materials. -
Keywords:
- thermoelectric performance /
- suspended structure /
- thermal conductivity /
- boundary scattering
[1] Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar
[2] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 物理学报 68 117201Google Scholar
Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar
[3] 邹平, 吕丹, 徐桂英 2020 物理学报 69 057201Google Scholar
Zou P, Lv D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[5] Vining C B 2009 Nat. Mater. 8 83Google Scholar
[6] Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar
[7] Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8205Google Scholar
[8] Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar
[9] Zhao H, Sun X, Zhu Z, Zhong W, Song D, Lu W, Tao L 2020 J. Semicond. 41 081001Google Scholar
[10] Cai X, Han X, Zhao C, Niu C, Jia Y 2020 J. Semicond. 41 081002Google Scholar
[11] Castenmiller C, Zandvliet H J W 2020 J. Semicond. 41 082003Google Scholar
[12] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2008 Nature 451 168Google Scholar
[13] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar
[14] Zhang Y, Su Q, Zhu J, Koirala S, Koester S J, Wang X 2020 Appl. Phys. Lett. 116 202101Google Scholar
[15] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar
[16] Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar
[17] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar
[18] Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar
[19] Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar
[20] Park J, Bae K, Kim T R, Perez C, Sood A, Asheghi M, Goodson K E, Park W 2021 Adv. Sci. 8 2002876Google Scholar
[21] Zhao Y, Zheng M, Wu J, Huang B, Thong J T L 2020 Nanotechnol. 31 225702Google Scholar
[22] Madarasz F L, Lang J E, Szmulowicz F 1981 J. Electrochem. Soc. 128 2692Google Scholar
[23] Wada H, Kamijoh T 1996 Jpn. J. Appl. Phys. 35 L648Google Scholar
[24] Asheghi M, Kurabayashi K, Kasnavi R, Goodson K E 2002 J. Appl. Phys. 91 5079Google Scholar
[25] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar
[26] Alaie S, Goettler D F, Jiang Y B, Abbas K, Baboly M G, Anjum D H, Chaieb S, Leseman Z C 2015 Nanotechnol. 26 085704Google Scholar
[27] Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, de Boer M P, Shen S 2018 Nat. Commun. 9 1664Google Scholar
[28] Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar
[29] Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar
[30] Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar
[31] Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 3rd International Nanoelectronics Conference (INEC) January 3–8, 2010, Hong Kong, China p633
[32] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J 2015 Nat. Commun. 6 8573Google Scholar
[33] Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar
[34] An T H, Lim Y S, Park M J, Tak J Y, Lee S, Cho H K, Cho J Y, Park C, Seo W S 2016 APL Mater. 4 104812Google Scholar
[35] Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar
[36] Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar
[37] Haras M, Lacatena V, Morini F, Robillard J F, Monfray S, Skotnicki T, Dubois E 2014 IEEE International Electr on Devices Meeting (IEDM) December 15–17, 2014, San Francisco, CA, USA p8.5.1
[38] Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar
[39] Holland M G 1963 Phys. Rev. 132 2461Google Scholar
-
图 3 微悬空结构的制备流程 (a) LPCVD生长低应力氮化硅; (b) 金属剥离制备蛇形电阻和引出电极; (c) RIE刻蚀氮化硅; (d) 悬空结构的最终释放
Fig. 3. Micro-suspension structure preparation process: (a) LPCVD growth of low-stress silicon nitride; (b) metal stripping to prepare serpentine resistors and lead electrodes; (c) RIE etching of silicon nitride; (d) release of final suspended structure.
图 5 (a) 纳米探针与Si微/纳米带接触过程; (b) 通过Pt金属焊接, 将Si微/纳米带从原本的位置转移走; (c) 纳米探针把Si微/纳米带转移到悬空结构上的过程; (d) 通过Pt金属焊接, 将Si微/纳米带固定在悬空岛两端; (e) 样品1, Si微/纳米带的宽度为2000 nm; (f) 样品2, Si微/纳米带的宽度为800 nm
Fig. 5. (a) Contact process between nanoprobe and Si micro/nanobelt; (b) transfer the Si micro/nanobelt from its original position by Pt metal welding; (c) process of transferring the Si micro/nanobelt to the suspended structure by the nanoprobe; (d) fix the Si micro/nanobelt on both ends of the suspended island by Pt metal welding; (e) Sample 1, where the width of the Si micro/nanobelt is 2000 nm; (f) Sample 2, where the width of the Si micro/nanobelt is 800 nm.
图 9 (a) 样品在不同温度下的热导率值, 插点为文献值; (b) 样品在不同温度下的ZT值, 其中热导率和ZT值的不确定性分别为8%和13%
Fig. 9. (a) Thermal conductivity value of the sample at different temperatures, where the interpolation point is literature values; (b) ZT value of the samples at different temperatures. The uncertainty of thermal conductivity and ZT value are 8% and 13%, respectively.
表 1 不同样品的尺寸参数
Table 1. Size parameters of different samples.
宽度/nm 厚度/nm 长度/µm Sample 1 2000 220 5 Sample 2 800 220 3 -
[1] Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar
[2] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 物理学报 68 117201Google Scholar
Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar
[3] 邹平, 吕丹, 徐桂英 2020 物理学报 69 057201Google Scholar
Zou P, Lv D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[5] Vining C B 2009 Nat. Mater. 8 83Google Scholar
[6] Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar
[7] Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8205Google Scholar
[8] Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar
[9] Zhao H, Sun X, Zhu Z, Zhong W, Song D, Lu W, Tao L 2020 J. Semicond. 41 081001Google Scholar
[10] Cai X, Han X, Zhao C, Niu C, Jia Y 2020 J. Semicond. 41 081002Google Scholar
[11] Castenmiller C, Zandvliet H J W 2020 J. Semicond. 41 082003Google Scholar
[12] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2008 Nature 451 168Google Scholar
[13] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar
[14] Zhang Y, Su Q, Zhu J, Koirala S, Koester S J, Wang X 2020 Appl. Phys. Lett. 116 202101Google Scholar
[15] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar
[16] Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar
[17] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar
[18] Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar
[19] Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar
[20] Park J, Bae K, Kim T R, Perez C, Sood A, Asheghi M, Goodson K E, Park W 2021 Adv. Sci. 8 2002876Google Scholar
[21] Zhao Y, Zheng M, Wu J, Huang B, Thong J T L 2020 Nanotechnol. 31 225702Google Scholar
[22] Madarasz F L, Lang J E, Szmulowicz F 1981 J. Electrochem. Soc. 128 2692Google Scholar
[23] Wada H, Kamijoh T 1996 Jpn. J. Appl. Phys. 35 L648Google Scholar
[24] Asheghi M, Kurabayashi K, Kasnavi R, Goodson K E 2002 J. Appl. Phys. 91 5079Google Scholar
[25] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar
[26] Alaie S, Goettler D F, Jiang Y B, Abbas K, Baboly M G, Anjum D H, Chaieb S, Leseman Z C 2015 Nanotechnol. 26 085704Google Scholar
[27] Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, de Boer M P, Shen S 2018 Nat. Commun. 9 1664Google Scholar
[28] Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar
[29] Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar
[30] Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar
[31] Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 3rd International Nanoelectronics Conference (INEC) January 3–8, 2010, Hong Kong, China p633
[32] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J 2015 Nat. Commun. 6 8573Google Scholar
[33] Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar
[34] An T H, Lim Y S, Park M J, Tak J Y, Lee S, Cho H K, Cho J Y, Park C, Seo W S 2016 APL Mater. 4 104812Google Scholar
[35] Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar
[36] Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar
[37] Haras M, Lacatena V, Morini F, Robillard J F, Monfray S, Skotnicki T, Dubois E 2014 IEEE International Electr on Devices Meeting (IEDM) December 15–17, 2014, San Francisco, CA, USA p8.5.1
[38] Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar
[39] Holland M G 1963 Phys. Rev. 132 2461Google Scholar
计量
- 文章访问数: 5908
- PDF下载量: 118
- 被引次数: 0