搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重掺杂多晶硅薄膜中磷氧化物的探究

王艺琳 兰自轩 杜汇伟 赵磊 马忠权

引用本文:
Citation:

重掺杂多晶硅薄膜中磷氧化物的探究

王艺琳, 兰自轩, 杜汇伟, 赵磊, 马忠权

Phosphorus oxides in heavily doped polysilicon films

Wang Yi-Lin, Lan Zi-Xuan, Du Hui-Wei, Zhao Lei, Ma Zhong-Quan
PDF
HTML
导出引用
  • 在 n-型隧穿氧化物钝化接触(n-TOPCon)光伏器件中, 高浓度磷掺杂的多晶硅薄膜 (n+ poly-Si) 是电子选择性钝化的关键材料. 它的光学和电子学性能取决于化学组态与多晶结构的物相, 并依赖于晶态转化过程中的高温退火与结构弛豫. 采用低压化学气相沉积技术在 SiOx/n-Si 衬底上生长制备poly-Si (n+) 薄膜, 利用带有深度刻蚀特征的 X-射线光电子能谱、高分辨率透射电子显微术和 X-光衍射分析方法, 研究了该薄膜的微结构. 发现薄膜中氧(O)元素的 O 1s 态的两个拟合峰(O2 和 O3)的结合能分别为 532.1 eV 和 533.7 eV, 对应 O—Si 和 O—P 的成键态; 而磷(P)元素的P 2p态的两个拟合峰(P2 和 P3)的结合能分别为 132.4 eV和 135.1 eV, 对应着O—P*的同根成键态. 电子显微与光衍射分析表明, 该多晶硅薄膜具有 (111)晶向择优生长的特点, 晶面间距为0.313 nm, 平均晶粒尺寸在43.6—55.0 nm. 而(111)晶面簇在920 ℃高温退火过程中, 产生力学形变与晶界, 在局域范围内呈现大晶粒的单晶态. 结合热力学函数, 如生成焓、反应熵、热容、形成能与吉布斯自由能, 以及能量最低原理分析可知, 多晶硅薄膜内存在O—Si和 O—P键形成的条件, 产生了氧化硅和氧化磷的成键态.
    In tunneling oxide passivation contact (n-TOPCon) photovoltaic devices, poly-Si (n+) films with high-concentration phosphorus doping are the key materials for electron selective passivation. Its optical and electronic properties strongly depend on the chemical configuration and physical phase, and also on high temperature annealing and structural relaxation in the recrystallization process. The poly-Si (n+) films grown on SiOx/n-Si substrates by low pressure chemical vapor deposition technology are investigated, while the microstructure of the film is studied by using X-ray photoelectron spectroscopy with depth etching, high-resolution transmission electron microscopy and X-ray diffraction analysis. It is found that the binding energy values of the two fitted peaks (O2 and O3) of O 1s state of the thin film are situated at 532.1 and 533.7 eV, corresponding to the bonding of O—Si and O—P, respectively. The binding energy values of the two fitted peaks (P2 and P3) of P 2p state are located at 132.4 and 135.1 eV, corresponding to O—P* bonding with the same origin. Electronic microscopy and light diffraction analyses show that the polycrystalline silicon film has the characteristic of (111) preferential orientation, and the space of crystal plane is 0.313 nm, for which the average grain size is in a range of about 43.6–55.0 nm. However, the mechanical deformation and grain boundaries are generated in the annealing process at 920 ℃ along (111) crystal cluster, resulting in the localized monocrystalline state within large grains. The comprehensive analyses of thermodynamic function parameters of formation enthalpy, reaction entropy, heat capacity, formation energy and Gibbs free energy and energy minimum principle analysis indicate that there exist conditions for forming Si—O and P—O bonds in the polysilicon film, and thus the bonding state of silicon and phosphorus oxides are formed.
      通信作者: 马忠权, zqma@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874070, 61674099, 61274067)和上海大学索朗光伏材料与器件 R&D 联合实验室基金(批准号: SS-E0700601)资助的课题.
      Corresponding author: Ma Zhong-Quan, zqma@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874070, 61674099, 61274067) and the R&D Foundation of the SHU-SOENs PV Joint Laboratory, China (Grant No. SS-E0700601).
    [1]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [2]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 123Google Scholar

    [3]

    Shen W, Zhao Y, Liu F 2022 Front. Energy 16 40Google Scholar

    [4]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [5]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [6]

    Yan D, Cuevas A, Michel J I, Zhang C, Wan Y, Zhang X, Bullock J 2021 Joule 5 811Google Scholar

    [7]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energy Mater. Sol. Cells 206 110258Google Scholar

    [8]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [9]

    Chandra M N, Biswas S, Acharya S, Panda T, Sadhukhan S, Sharma J R, Nandi A, Bose S, Kole A, Das G, Maity S, Chaudhuri P, Saha H 2020 Mater. Sci. Semicond. Process. 119 105163Google Scholar

    [10]

    Padhamnath P, Khanna A, Nandakumar N, Nampalli N, Shanmugam V, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 207 110358Google Scholar

    [11]

    Gao T, Yang Q, Guo X Q, Huang Y Q, Zhang Z, Wang Z X, Liao M D, Shou C H, Zeng Y H, Yan B J, Hou G F, Zhang X D, Zhao Y, Ye J C 2019 Sol. Energy Mater. Sol. Cells 200 109926Google Scholar

    [12]

    Kim D R, Lee C H, Weisse J M, Cho I S, Zheng X 2012 Nano Lett. 12 6485Google Scholar

    [13]

    Polzin J I, Hammann B, Niewelt T, Kwapil W, Hermle M, Feldmann F 2021 Sol. Energy Mater. Sol. Cells 230 111267Google Scholar

    [14]

    Padhamnath P, Khanna A, Balaji N, Shanmugam V, Nandakumar N, Wang D, Sun Q, Huang M, Huang S, Fan B, Ding B, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 218 110751Google Scholar

    [15]

    Susa M, Kawagishi K, Tanaka N, Nagata K 1997 J. Electrochem. Soc. 144 2552Google Scholar

    [16]

    Hide I, Matsuyama T, Suzuki M, Yamashita H, Suzuki T, Moritani T, Maeda Y 1990 J. Cryst. Growth 99 1339Google Scholar

    [17]

    Fırat M, Payo M R, Duerinckx F, Luchies J-M, Lenes M, Poortmans J 2019 AIP Conf. Proc. 2147 040004Google Scholar

    [18]

    Kern W 1970 RCA Rev. 31 51Google Scholar

    [19]

    Lozac'h M, Nunomura S, Matsubara K 2020 Sol. Energy Mater. Sol. Cells 207 110357Google Scholar

    [20]

    Han L, Chen Z 2013 ECS J. Solid State Sci. Technol. 2 N228Google Scholar

    [21]

    Ying W B, Mizokawa Y, Kamiura Y, Kawamoto K, Yang W Y 2001 Appl. Surf. Sci. 181 1Google Scholar

    [22]

    Sherwood P M A 2002 Surf. Sci. Spectra 9 62Google Scholar

    [23]

    Moulder J F, Chastain J, King R C 1992 Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Waltham: Perkin-Elmer Corporation) pp230–232

    [24]

    Chen K, Bothwell A, Guthrey H, Hartenstein M B, Polzin J I, Feldmann F, Nemeth W, Theingi S, Page M, Young D L, Stradins P, Agarwal S 2022 Sol. Energy Mater. Sol. Cells 236 111510Google Scholar

    [25]

    Monshi A, Foroughi M R, Monshi M R 2012 World J. Nano Sci. Eng. 2 154Google Scholar

    [26]

    Kale A S, Nemeth W, Guthrey H, Nanayakkara S U, LaSalvia V, Theingi S, Findley D, Page M, Al-Jassim M, Young D L, Stradins P, Agarwal S 2019 ACS Appl. Mater. Interfaces 11 42021Google Scholar

    [27]

    De Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Krishna Ande C, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2 150009Google Scholar

    [28]

    De Jong M, Chen W, Geerlings H, Asta M, Persson K A 2015 Sci. Data 2 150053Google Scholar

    [29]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [30]

    Perry D L, Phillips S L 1998 Handbook of inorganic compounds (Boca Raton: CRC Press)

    [31]

    Jung I H, Hudon P 2012 J. Am. Ceram. Soc. 95 3665Google Scholar

    [32]

    Rahman M, Hudon P, Jung I H 2013 Metall. Mater. Trans. B 44 837Google Scholar

    [33]

    Boigelot R, Graz Y, Bourgel C, Defoort F, Poirier J 2015 Ceram. Int. 41 2353Google Scholar

  • 图 1  n-TOPCon 器件结构示意图

    Fig. 1.  Schematic diagram of n-TOPCon device.

    图 2  P 2p, Si 2p, O 1s态的XPS能谱图(描述了能谱在薄膜不同深度处的强度变化, 对应刻蚀时间为a: 0 s, b: 500 s, c: 1500 s, d: 2000 s, e: 2600 s) (a) P 2p态的XPS能谱和Si 2p态的等离激元损失峰; (b) Si 2p 态的XPS能谱; (c) O 1s 态的XPS能谱. 为了方便显示各元素结合能的变化, 对(a)—(c)图谱曲线的强度均做出了调整

    Fig. 2.  The XPS spectra of P 2p, Si 2p and O 1s, which describes the changes of density with different depths at etching time of a 0 s, b 500 s, c 1500 s, d 2000 s, and e 2600 s. (a) XPS spectra of P 2p states and Si 2p for plasmon loss peak; (b) XPS spectra of Si 2p states; (c) XPS spectra of O 1s states. In order to display the change of binding energy of each elements intuitively, the intensity of spectrum curves in panel (a)–(c) are adjusted.

    图 3  刻蚀时间为2000 s时P 2p态、Si 2p、O 1s态的分峰拟合图谱 (a) P 2p态; (b) Si 2p态; (c) O 1s态

    Fig. 3.  Fitting peak spectra of P 2p, Si 2p, O 1s state of etching time of 2000 s: (a) P 2p state; (b) Si 2p state; (c) O 1s state.

    图 4  n-TOPCon器件中poly-Si (n+)薄膜的XRD表征, 其中a, b分别为同一样品的两次测量结果

    Fig. 4.  Characterization of poly-Si (n+) film in n-TOPCon device, and a, b are the two measurements for the same sample, respectively.

    图 5  (a) n-TOPCon器件中poly-Si (n+)薄膜的不同晶面方向与力学形变; (b) poly-Si (n+)/SiOx/n-Si界面与隧穿氧化硅

    Fig. 5.  (a) Characterization of different crystal face orientations and mechanical strains in poly-Si (n+) film of n-TOPCon device; (b) poly-Si (n+)/SiOx/n-Si interface and tunneling silicon oxide.

    表 1  298 K(室温)时, SiP, SiO, SiO2 和P2O5的热力学函数参数(生成焓、热容、反应熵与形成能)

    Table 1.  Thermodynamic function parameters (formation enthalpy, heat capacity, reaction entropy and formation energy) of SiP, SiO, SiO2 and P2O5 at 298 K (RT).

    $ {H}_{0}^{298} $/
    eV
    ${C}_{\mathrm{P} }$/
    (J·mol–1·K–1)
    ${ {S} }_{0}^{298}/$
    (J·mol–1·K–1)
    形成能/
    eV
    SiP–0.64–5.6533.35–0.28
    SiO–8.19–2.05211.18–4.11
    SiO2–9.44–10.0843.63–9.81
    P2O5–31.20–15.6117.07–15.60
    下载: 导出CSV

    表 2  1193 K (920 ℃)时, SiP, SiO, SiO2 和 P2O5的热力学函数参数(生成焓、热容、反应熵与形成能)

    Table 2.  Thermodynamic function parameters (formation enthalpy, heat capacity, reaction entropy and Gibbs free energy) of SiP, SiO, SiO2 and P2O5 at 1193 K.

    $ {H}_{0}^{1193} $/
    eV
    $ {C}_{\mathrm{P}} $/
    (J·mol–1·K–1)
    $ {S}_{0}^{1193} $/
    (J·mol–1·K–1)
    $ {G}_{0}^{1193} $
    /
    eV
    SiP–53.05–5.6525.51–53.37
    SiO–27.21–2.05208.34–29.79
    SiO2–102.95–10.0829.65–103.31
    P2O5–176.01–15.61–4.58–175.95
    下载: 导出CSV
  • [1]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [2]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 123Google Scholar

    [3]

    Shen W, Zhao Y, Liu F 2022 Front. Energy 16 40Google Scholar

    [4]

    Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429Google Scholar

    [5]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [6]

    Yan D, Cuevas A, Michel J I, Zhang C, Wan Y, Zhang X, Bullock J 2021 Joule 5 811Google Scholar

    [7]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energy Mater. Sol. Cells 206 110258Google Scholar

    [8]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nat. Energy 2 17032Google Scholar

    [9]

    Chandra M N, Biswas S, Acharya S, Panda T, Sadhukhan S, Sharma J R, Nandi A, Bose S, Kole A, Das G, Maity S, Chaudhuri P, Saha H 2020 Mater. Sci. Semicond. Process. 119 105163Google Scholar

    [10]

    Padhamnath P, Khanna A, Nandakumar N, Nampalli N, Shanmugam V, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 207 110358Google Scholar

    [11]

    Gao T, Yang Q, Guo X Q, Huang Y Q, Zhang Z, Wang Z X, Liao M D, Shou C H, Zeng Y H, Yan B J, Hou G F, Zhang X D, Zhao Y, Ye J C 2019 Sol. Energy Mater. Sol. Cells 200 109926Google Scholar

    [12]

    Kim D R, Lee C H, Weisse J M, Cho I S, Zheng X 2012 Nano Lett. 12 6485Google Scholar

    [13]

    Polzin J I, Hammann B, Niewelt T, Kwapil W, Hermle M, Feldmann F 2021 Sol. Energy Mater. Sol. Cells 230 111267Google Scholar

    [14]

    Padhamnath P, Khanna A, Balaji N, Shanmugam V, Nandakumar N, Wang D, Sun Q, Huang M, Huang S, Fan B, Ding B, Aberle A G, Duttagupta S 2020 Sol. Energy Mater. Sol. Cells 218 110751Google Scholar

    [15]

    Susa M, Kawagishi K, Tanaka N, Nagata K 1997 J. Electrochem. Soc. 144 2552Google Scholar

    [16]

    Hide I, Matsuyama T, Suzuki M, Yamashita H, Suzuki T, Moritani T, Maeda Y 1990 J. Cryst. Growth 99 1339Google Scholar

    [17]

    Fırat M, Payo M R, Duerinckx F, Luchies J-M, Lenes M, Poortmans J 2019 AIP Conf. Proc. 2147 040004Google Scholar

    [18]

    Kern W 1970 RCA Rev. 31 51Google Scholar

    [19]

    Lozac'h M, Nunomura S, Matsubara K 2020 Sol. Energy Mater. Sol. Cells 207 110357Google Scholar

    [20]

    Han L, Chen Z 2013 ECS J. Solid State Sci. Technol. 2 N228Google Scholar

    [21]

    Ying W B, Mizokawa Y, Kamiura Y, Kawamoto K, Yang W Y 2001 Appl. Surf. Sci. 181 1Google Scholar

    [22]

    Sherwood P M A 2002 Surf. Sci. Spectra 9 62Google Scholar

    [23]

    Moulder J F, Chastain J, King R C 1992 Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Waltham: Perkin-Elmer Corporation) pp230–232

    [24]

    Chen K, Bothwell A, Guthrey H, Hartenstein M B, Polzin J I, Feldmann F, Nemeth W, Theingi S, Page M, Young D L, Stradins P, Agarwal S 2022 Sol. Energy Mater. Sol. Cells 236 111510Google Scholar

    [25]

    Monshi A, Foroughi M R, Monshi M R 2012 World J. Nano Sci. Eng. 2 154Google Scholar

    [26]

    Kale A S, Nemeth W, Guthrey H, Nanayakkara S U, LaSalvia V, Theingi S, Findley D, Page M, Al-Jassim M, Young D L, Stradins P, Agarwal S 2019 ACS Appl. Mater. Interfaces 11 42021Google Scholar

    [27]

    De Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Krishna Ande C, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2 150009Google Scholar

    [28]

    De Jong M, Chen W, Geerlings H, Asta M, Persson K A 2015 Sci. Data 2 150053Google Scholar

    [29]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [30]

    Perry D L, Phillips S L 1998 Handbook of inorganic compounds (Boca Raton: CRC Press)

    [31]

    Jung I H, Hudon P 2012 J. Am. Ceram. Soc. 95 3665Google Scholar

    [32]

    Rahman M, Hudon P, Jung I H 2013 Metall. Mater. Trans. B 44 837Google Scholar

    [33]

    Boigelot R, Graz Y, Bourgel C, Defoort F, Poirier J 2015 Ceram. Int. 41 2353Google Scholar

  • [1] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2022, 71(4): 046104. doi: 10.7498/aps.71.20211691
    [2] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [3] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211691
    [4] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [5] 唐贵德, 李壮志, 马丽, 吴光恒, 胡凤霞. 典型磁性材料价电子结构研究面临的机遇与挑战. 物理学报, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [6] 张宁, 徐开凯, 陈彦旭, 朱坤峰, 赵建明, 于奇. 金属-氧化物-半导体硅发光器件在集成电路中的应用前景. 物理学报, 2019, 68(16): 167803. doi: 10.7498/aps.68.20191004
    [7] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [8] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [9] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型. 物理学报, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [10] 崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军. 高频激光脉冲作用下原子的光子和光电子发射. 物理学报, 2015, 64(4): 043201. doi: 10.7498/aps.64.043201
    [11] 辛艳辉, 刘红侠, 王树龙, 范小娇. 对称三材料双栅应变硅金属氧化物半导体场效应晶体管二维解析模型. 物理学报, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [12] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [13] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [14] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [15] 王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛. 漏致势垒降低效应对短沟道应变硅金属氧化物半导体场效应管阈值电压的影响. 物理学报, 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [16] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型. 物理学报, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [17] 刘召军, 孟志国, 赵淑云, 郭海成, 吴春亚, 熊绍珍. 用镍硅氧化物源横向诱导晶化的多晶硅薄膜. 物理学报, 2010, 59(4): 2775-2782. doi: 10.7498/aps.59.2775
    [18] 刘秀喜, 王公堂. 有机硅化合物-金属氧化物绝缘保护材料在制造高压晶闸管中的应用研究. 物理学报, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [19] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化. 物理学报, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [20] 季振国, 陈立登, 马向阳, 姚鸿年, 阙端麟. 发光多孔硅的X射线光电子能谱深度剖析. 物理学报, 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
计量
  • 文章访问数:  3783
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-05-23
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回