-
铱元素是测量中子能谱的优质活化探测器. 本文围绕191Ir(n,2n)190Ir反应截面开展了实验研究, 在PD-300中子发生器DT中子源上采用活化法以93Nb(n,2n)92mNb反应截面为标准进行了14 MeV附近9个能点的191Ir(n,2n)190Ir反应截面测量, 活化产物采用高纯锗探测器进行了测量, 获得了13.40—14.86 MeV范围内191Ir (n,2n) 190Ir第2激发态截面σm2, 191Ir(n,2n)190Ir基态与第1激发态之和的反应截面σg+m1、总反应截面σg+m1+m2和截面比σm2/σg+m1等实验数据, 实验不确定度在3.4%—3.5%, 其中, 14 MeV对应σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, 截面比σm2/σg+m1 = 0.0690 ± 0.0024. 实验结果与文献数据及ENDF/B-VIII.0 和JEFF3.0/A数据库评价数据进行了比较, 结果表明: 第1激发态与基态截面之和σg+m1实验结果与文献数据取得了较好的一致性, ENDF/B-VIII.0数据库评价数据与本工作所得191Ir(n,2n)190Ir总反应截面σg+m1+m2实验数据较好地符合, 对文献数据分歧情况进行了分析和澄清; 本实验结果与文献数据相较有更高的测量精度, 本研究结果可为核数据评价相关工作提供重要参考.Natural iridium acts as a high-quality activated detector for probing the energy components of a neutron fluence. Measurements of 191Ir(n,2n)190Ir cross sections are carried out near 14 MeV by the activation method based on 93Nb(n,2n)92mNb reaction cross section standard by PD-300 neutron generator DT neutron source. The (n,2n) products are measured by using a calibrated high pure Ge detector. The cross sections of 191Ir(n,2n)190Ir, σm2 and σg+m1, are measured carefully. The 191Ir(n,2n)190Ir cross sections: σm2, σg+m1, σg+m1+m2 and cross section ratio of σm2/σg+m1 are obtained in an energy range of 13.40–14.86 MeV. Experimental uncertainties are in a range of 3.4%–3.5%. The measured cross sections for the reaction of 191Ir(n,2n)190Ir at 14 MeV are σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, and σm2/σg+m1 = 0.0690 ± 0.0024. The present data are compared with the previous experimental data and the ENDF/B-VIII.0 and JEFF3.0/A evaluated data, showing that the experimental data from the literature are in good agreement with the present data for σg+m1, the evaluated data from JEFF3.0/A are underestimated by 5%–20% in comparison with the present data for σm2, the evaluated data from ENDF/B-VIII.0 are underestimated by 10% in comparison with the present data for σm2, and the ENDF/B-VIII.0 data are consistent with the present data for σg+m1+m2. The discrepancies between the data from the literature and the present data are analyzed and clarified. The present data show significant improvement in accuracy in comparison with data from the literature, these results provide more reliable nuclear data for improving the future evaluation.
-
Keywords:
- cross section /
- Ir /
- activation method /
- DT neutron source
[1] Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar
[2] Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar
[3] Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar
[4] Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar
[5] Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310
[6] Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar
[7] Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar
[8] Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451
[9] Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar
[10] 张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678
Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678
[11] Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259
[12] Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar
[13] Singh B 2003 Nucl. Data Sheets 99 275Google Scholar
[14] nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]
[15] Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584
[16] Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar
[17] Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar
[18] Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar
[19] 朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1
Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)
[20] Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar
[21] Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20
-
表 1 样品参数
Table 1. Sample characteristics.
样品 纯度/% 同位素成分/% 厚度/mm 直径/mm Nb 99.999 93Nb 100 0.5 20 Ir 99.95 191Ir 37.3 0.5 20 193Ir 62.7 表 2 在实验数据分析中使用的同位素参数
Table 2. Details of radioactivity constants used in analysis of experimental data.
核素 半衰期 Eγ/keV Iγ 92mNb 10.15 d 934.44 0.9915 190gIr 11.78 d 371.24 0.216 190m2Ir 3.087 h 616.50 0.9015 表 3 191Ir(n,2n)190Ir反应截面及截面比实验结果
Table 3. The 191Ir(n,2n)190Ir cross sections and cross section ratio from this work.
En/MeV σg+m1/mb σm2/mb σ/mb σm2/σg+m1 13.40 1939.42 ± 65.94 122.09 ± 4.29 2061.51 ± 70.23 0.0630 ± 0.0022 13.60 1957.66 ± 66.56 128.30 ± 4.58 2085.96 ± 71.14 0.0655 ± 0.0023 13.80 1963.28 ± 66.75 132.92 ± 4.85 2096.20 ± 71.60 0.0677 ± 0.0024 14.00 1972.35 ± 67.06 136.05 ± 4.93 2108.40 ± 71.99 0.0690 ± 0.0024 14.20 1977.33 ± 67.23 140.08 ± 5.03 2117.41 ± 72.26 0.0708 ± 0.0025 14.40 1981.92 ± 67.39 150.98 ± 5.34 2132.90 ± 72.73 0.0762 ± 0.0026 14.60 1980.04 ± 67.32 161.50 ± 5.82 2141.54 ± 73.14 0.0816 ± 0.0029 14.80 1981.45 ± 67.37 164.25 ± 5.87 2145.70 ± 73.24 0.0829 ± 0.0029 14.86 1964.28 ± 66.79 158.56 ± 5.72 2122.84 ± 72.51 0.0807 ± 0.0028 表 4 反应截面测量结果的不确定度
Table 4. Uncertainties in the cross section.
不确定度来源 不确定度
%93Nb(n,2n)92mNb反应截面数据 2.0 伴随α粒子相对监测 1.0 HPGe探测器效率刻度 2.0 特征γ射线峰计数 0.7—0.9 衰变数据 1.0 时间因子 0.5 修正因子 1.0 总不确定度 3.4—3.5 -
[1] Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar
[2] Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar
[3] Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar
[4] Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar
[5] Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310
[6] Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar
[7] Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar
[8] Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451
[9] Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar
[10] 张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678
Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678
[11] Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259
[12] Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar
[13] Singh B 2003 Nucl. Data Sheets 99 275Google Scholar
[14] nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]
[15] Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584
[16] Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar
[17] Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar
[18] Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar
[19] 朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1
Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)
[20] Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar
[21] Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20
计量
- 文章访问数: 3904
- PDF下载量: 50
- 被引次数: 0