搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14 MeV附近191Ir(n,2n)190Ir反应截面实验研究

朱传新 秦建国 郑普 蒋励 朱通华 鹿心鑫

引用本文:
Citation:

14 MeV附近191Ir(n,2n)190Ir反应截面实验研究

朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫

Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV

Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin
PDF
HTML
导出引用
  • 铱元素是测量中子能谱的优质活化探测器. 本文围绕191Ir(n,2n)190Ir反应截面开展了实验研究, 在PD-300中子发生器DT中子源上采用活化法以93Nb(n,2n)92mNb反应截面为标准进行了14 MeV附近9个能点的191Ir(n,2n)190Ir反应截面测量, 活化产物采用高纯锗探测器进行了测量, 获得了13.40—14.86 MeV范围内191Ir (n,2n) 190Ir第2激发态截面σm2, 191Ir(n,2n)190Ir基态与第1激发态之和的反应截面σg+m1、总反应截面σg+m1+m2和截面比σm2/σg+m1等实验数据, 实验不确定度在3.4%—3.5%, 其中, 14 MeV对应σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, 截面比σm2/σg+m1 = 0.0690 ± 0.0024. 实验结果与文献数据及ENDF/B-VIII.0 和JEFF3.0/A数据库评价数据进行了比较, 结果表明: 第1激发态与基态截面之和σg+m1实验结果与文献数据取得了较好的一致性, ENDF/B-VIII.0数据库评价数据与本工作所得191Ir(n,2n)190Ir总反应截面σg+m1+m2实验数据较好地符合, 对文献数据分歧情况进行了分析和澄清; 本实验结果与文献数据相较有更高的测量精度, 本研究结果可为核数据评价相关工作提供重要参考.
    Natural iridium acts as a high-quality activated detector for probing the energy components of a neutron fluence. Measurements of 191Ir(n,2n)190Ir cross sections are carried out near 14 MeV by the activation method based on 93Nb(n,2n)92mNb reaction cross section standard by PD-300 neutron generator DT neutron source. The (n,2n) products are measured by using a calibrated high pure Ge detector. The cross sections of 191Ir(n,2n)190Ir, σm2 and σg+m1, are measured carefully. The 191Ir(n,2n)190Ir cross sections: σm2, σg+m1, σg+m1+m2 and cross section ratio of σm2/σg+m1 are obtained in an energy range of 13.40–14.86 MeV. Experimental uncertainties are in a range of 3.4%–3.5%. The measured cross sections for the reaction of 191Ir(n,2n)190Ir at 14 MeV are σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, and σm2/σg+m1 = 0.0690 ± 0.0024. The present data are compared with the previous experimental data and the ENDF/B-VIII.0 and JEFF3.0/A evaluated data, showing that the experimental data from the literature are in good agreement with the present data for σg+m1, the evaluated data from JEFF3.0/A are underestimated by 5%–20% in comparison with the present data for σm2, the evaluated data from ENDF/B-VIII.0 are underestimated by 10% in comparison with the present data for σm2, and the ENDF/B-VIII.0 data are consistent with the present data for σg+m1+m2. The discrepancies between the data from the literature and the present data are analyzed and clarified. The present data show significant improvement in accuracy in comparison with data from the literature, these results provide more reliable nuclear data for improving the future evaluation.
      通信作者: 朱传新, zcx_602@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11775200)资助的课题.
      Corresponding author: Zhu Chuan-Xin, zcx_602@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775200).
    [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

  • 图 1  190Ir衰变纲图

    Fig. 1.  Simplified representation of formation and decay of 190Ir.

    图 2  (n,2n)激发函数实验装置

    Fig. 2.  Experiment assembly of (n,2n) excitation fuction.

    图 3  样品放置

    Fig. 3.  Sample setting.

    图 4  样品及实验装置照片

    Fig. 4.  The picture of experiment assembly and sample.

    图 5  高纯锗探测效率曲线

    Fig. 5.  Efficiency-energy curve for Ge detector.

    图 6  冷却2 d后的铱样品γ谱

    Fig. 6.  The γ-ray spectra of iridium sample with 2 d cooling time.

    图 7  190Ir激发态γ谱

    Fig. 7.  The γ-ray spectra of 190 m2Ir.

    图 8  92 mNb的γ谱

    Fig. 8.  The γ-ray spectra of 92 mNb.

    图 9  σg+m1实验结果与文献及评价数据的比较

    Fig. 9.  Comparison with reference and the available evaluated data of σg+m1.

    图 10  σm2与文献及评价数据的比较

    Fig. 10.  Comparison with reference and the available evaluated data of σm2.

    图 11  σg+m1+m2与文献及评价数据的比较

    Fig. 11.  Comparison with reference and the available evaluated data of σg+m1+m2.

    表 1  样品参数

    Table 1.  Sample characteristics.

    样品纯度/%同位素成分/%厚度/mm直径/mm
    Nb99.99993Nb 1000.520
    Ir99.95191Ir 37.30.520
    193Ir 62.7
    下载: 导出CSV

    表 2  在实验数据分析中使用的同位素参数

    Table 2.  Details of radioactivity constants used in analysis of experimental data.

    核素半衰期Eγ/keVIγ
    92mNb10.15 d934.440.9915
    190gIr11.78 d371.240.216
    190m2Ir3.087 h616.500.9015
    下载: 导出CSV

    表 3  191Ir(n,2n)190Ir反应截面及截面比实验结果

    Table 3.  The 191Ir(n,2n)190Ir cross sections and cross section ratio from this work.

    En/MeVσg+m1/mbσm2/mbσ/mbσm2/σg+m1
    13.401939.42 ± 65.94122.09 ± 4.292061.51 ± 70.230.0630 ± 0.0022
    13.601957.66 ± 66.56128.30 ± 4.582085.96 ± 71.140.0655 ± 0.0023
    13.801963.28 ± 66.75132.92 ± 4.852096.20 ± 71.600.0677 ± 0.0024
    14.001972.35 ± 67.06136.05 ± 4.932108.40 ± 71.990.0690 ± 0.0024
    14.201977.33 ± 67.23140.08 ± 5.032117.41 ± 72.260.0708 ± 0.0025
    14.401981.92 ± 67.39150.98 ± 5.342132.90 ± 72.730.0762 ± 0.0026
    14.601980.04 ± 67.32161.50 ± 5.822141.54 ± 73.140.0816 ± 0.0029
    14.801981.45 ± 67.37164.25 ± 5.872145.70 ± 73.240.0829 ± 0.0029
    14.861964.28 ± 66.79158.56 ± 5.722122.84 ± 72.510.0807 ± 0.0028
    下载: 导出CSV

    表 4  反应截面测量结果的不确定度

    Table 4.  Uncertainties in the cross section.

    不确定度来源不确定度
    %
    93Nb(n,2n)92mNb反应截面数据2.0
    伴随α粒子相对监测1.0
    HPGe探测器效率刻度2.0
    特征γ射线峰计数0.7—0.9
    衰变数据1.0
    时间因子0.5
    修正因子1.0
    总不确定度3.4—3.5
    下载: 导出CSV
  • [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

  • [1] 罗淏天, 张奇玮, 栾广源, 王晓宇, 邹翀, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 吴鸿毅, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于白光中子源的197Au中子辐射俘获截面测量及共振参数分析. 物理学报, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [2] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [3] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [4] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [5] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [6] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [7] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [8] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [9] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究. 物理学报, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [10] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面. 物理学报, 2011, 60(2): 021101. doi: 10.7498/aps.60.021101
    [12] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学. 物理学报, 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [13] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [14] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [15] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [16] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [17] 陆 晓, 孙小军, 杨永栩. 在独立α集团模型下对敲出反应16O(p,pα)12C和16 O(α,2α)12C的研究. 物理学报, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [18] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [19] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
    [20] 姚立山, 靳玉玲, 蔡敦九. 14MeV中子(n,T)与(n,3He)反应截面的系统学研究. 物理学报, 1993, 42(1): 17-24. doi: 10.7498/aps.42.17
计量
  • 文章访问数:  2703
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-05-24
  • 上网日期:  2022-09-27
  • 刊出日期:  2022-10-05

/

返回文章
返回