搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VO2的波束可调太赫兹天线

刘紫玉 亓丽梅 道日娜 戴林林 武利勤

引用本文:
Citation:

基于VO2的波束可调太赫兹天线

刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤

Beam steerable terahertz antenna based on VO2

Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin
PDF
HTML
导出引用
  • 基于VO2的相变特性, 提出了仅用两种混合结构实现2-bit (四种状态)编码的太赫兹编码超表面. 结构单元中贯通的金属线可用作电压引线对单行阵列进行控制, 使得固定阵列结构能够呈现不同的状态编码, 实现对波束的动态调控. 此外, 采用MATLAB软件对编码超表面阵列天线进行了可视化设计, 通过对工作频率、波束偏转角度等参数的设置, 实现了对状态序列与辐射结果的预测. 该可视化系统不限于具体的结构单元, 对一切满足编码条件的阵列均具有普适性. 最后, 采用深度神经网络进行了逆向天线设计, 通过与模拟对比验证了其在波束偏转角度和单元排布的有效性. 本文为主动灵活调控太赫兹波提供了新途径, 在太赫兹成像、相控雷达、通信等领域具有潜在的应用价值.
    To realize the diversified applications of terahertz wave, a new method to realize 2-bit (4 states) coding metasurface with only two hybrid units is proposed, which combines the phase transition characteristics of VO2 and is different from the traditional metasurface. The metal wire threaded through the patch makes single-line control possible. The method of preparing the VO2 thin film and the voltage control mechanism make the design more practical. The highlight of this design is that the fixed structure array can encode different state sequences and then tune the reflected beam. On this basis, a visual design is carried out for the calculation of the coding metasurface array antenna by MATLAB. The state sequence and radiation results are predicted by actively setting the operating frequency, beam deflection angle, etc., so as to achieve active adjustment. The system does not limit the unit structure and is universal to all arrays that meet the coding conditions. In addition, a deep neural network is introduced into the array arrangement, and the structure sequence is predicted by algorithm training and verified by numerical calculation and full-wave simulation. The results show that the proposed method is effective in beam deflection angle and structure arrangement. This study presents a new way of actively and flexibly controlling terahertz waves, which has potential applications in terahertz imaging, phase-controlled radar, communication and other fields.
      通信作者: 亓丽梅, qilimei1204@163.com
    • 基金项目: 国家自然科学基金(批准号: 62175016, 61875017)资助的课题.
      Corresponding author: Qi Li-Mei, qilimei1204@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175016, 61875017).
    [1]

    刘盛纲, 钟任斌 2009 电子科技大学报 38 481Google Scholar

    Liu S G, Zhong R B 2009 J. Univ. Electron. Sci. Technol. China 38 481Google Scholar

    [2]

    梁培龙, 戴景民 2015 自动化技术与应用 34 1

    Liang P L, Dai J M 2015 Tech. Autom. Appl. 34 1 (in Chinese)

    [3]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [4]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. App. 3 e218Google Scholar

    [5]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [6]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

    [7]

    Gao Y J, Xiong X, Wang Z, Chen F, Wang M 2020 Phys. Rev. X 10 031035Google Scholar

    [8]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F 2015 Light Sci. Appl. 4 e324Google Scholar

    [9]

    Xiao B, Zhang Y, Tong S, Yu J, Xiao L 2020 Opt. Express 28 7125Google Scholar

    [10]

    Vasic B, Isi G, Beccherelli R, Zografopoulos D C 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar

    [11]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar

    [12]

    沈仕远, 王元圣, 池瑶佳, 马新迎, 杨青慧, 陈智, 文岐业 2021 太赫兹科学与电子信息学报 19 6Google Scholar

    Shen S Y, Wang Y S, Chi Y J, Ma X Y, Yang Q H, Chen Z, Wen Q Y 2021 J. Terahertz Sci. Electron. Inform. Technol. 19 6Google Scholar

    [13]

    Yan D X, Meng M, Li J S, Li J N, Li X J 2020 Opt. Express 28 29843Google Scholar

    [14]

    Liu K, Lee S, Yang S, Delaire O, Wu J Q 2018 Mater. Today 21 875Google Scholar

    [15]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [16]

    Li J, Li J T, Zhang Y T, Li J N, Yang Y, Zhao H L, Zheng C L, Li J H, Huang J, Li F Y, Tang T T, Yao J Q 2020 Opt. Commun. 460 124986Google Scholar

    [17]

    Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory Simul. 3 1900183Google Scholar

    [18]

    Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar

    [19]

    Pan W M, Li J S, Zhou C 2021 Opt. Mater. Express 11 1070Google Scholar

    [20]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [21]

    Shabanpour J, Beyraghi S, Cheldavi A 2020 Sci. Rep. 10 8950Google Scholar

    [22]

    Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lv B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar

    [23]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B 33 980Google Scholar

    [24]

    Tak J, Kantemur A, Sharma Y, Xin H 2018 IEEE Antennas Wirel. Propag. Lett. 17 2008Google Scholar

    [25]

    Silva C R, Martins S R 2013 Opt. Technol. Lett. 55 1864Google Scholar

    [26]

    So S, Badloe T, Noh J, Bravo-Abad J, Rho J 2019 Nanophotonics 9 1041Google Scholar

    [27]

    Prado D R, Lopez-Fernandez J A, Arrebola M, Goussetis G 2018 48th European Microwave Conference (EuMC) Madrid Septemper 23, 2018 1545

    [28]

    Hou J J, Lin H, Xu W L, Tian Y Z, Wang Y, Shi X T, Deng F, Chen L J 2020 IEEE Access 8 211849Google Scholar

    [29]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [30]

    Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar

    [31]

    Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar

    [32]

    Shen X M 2003 The 13th Annual Conference of Electronic Countermeasures Branch of Chinese Society of Electronics Guilin October 1, 2003 p506 (in Chinese) [沈喜明 2003 中国电子学会电子对抗分会第十三届学术年会论文集. 桂林 第506页]

    [33]

    曾泓鑫 2020 博士学位论文 (成都: 电子科技大学)

    Zeng H X 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [34]

    Ghorbani F, Beyraghi S, Shabanpour J, Oraizi H, Soleimani H, Soleimani M 2021 Sci. Rep. 11 7102Google Scholar

    [35]

    Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light Sci. Appl. 7 1Google Scholar

    [36]

    Sharma Y, Zhang H H, Xin H 2020 IEEE Trans. Antennas Propag. 68 5658Google Scholar

  • 图 1  编码单元A (a)和B (d)示意图(黄色为金属, 红色为VO2); VO2为金属态和绝缘态时编码单元A和B的(b), (e)反射幅度图及(c), (f)反射相位图; 在工作频率0.22 THz处, 编码单元A在(g)金属态和(h)绝缘态时电场分布; 编码单元B在(i)绝缘态和(j)金属态时电场分布

    Fig. 1.  Model of unit A (a) and B (d) (The yellow part is the metal and the red part is VO2). Magnitude (b), (e) and phase (c), (f) of reflection for unit A and B when VO2 is in metallic state and insulation state. At operating frequency of 0.22 THz, the electric field distribution of unit A in the (g) metallic and (h) insulating state; the electric field distribution of unit B in the (i) metallic and (j) insulating state.

    图 2  超表面天线阵列示意图

    Fig. 2.  Schematic diagram of the metasurface antenna array.

    图 3  单元阵列按照“ABAB······”周期排列, 预设角度不同时对应的状态序列的(a), (c)极坐标辐射图和(b), (d)直角坐标辐射图  (a), (b) 预设角度为15°; (c), (d)预设角度为30°. 图中标注出了实际主瓣波束偏转角度

    Fig. 3.  Under the condition of different deflection angle, (a), (c) polar radiation map and (b), (d) cartesian radiation map of corresponding coding sequence when the structure arrays are arranged alternately by “ABAB······” : (a), (b) The deflection angle is 15°; (c), (d) the deflection angle is 30°. The actual deflection angle of main lobe beam is marked in the figures.

    图 4  CST仿真辐射结果 (a) 状态序列为“121232323434341212121232” , 主瓣波束偏转角为15°; (b) 状态序列为“123234121212343412123234” , 主瓣波束偏转角为30°

    Fig. 4.  CST simulation radiation: (a) State sequence of “121232323434341212121232”, the deflection angle of main lobe beam is 15°; (b) state sequence of “123234121212343412123234”, the deflection angle of main lobe beam is 30°.

    图 5  (a) 深度神经网络示意图; (b) DNN预测误差曲线

    Fig. 5.  (a) Structure of proposed DNN; (b) the training loss of DNN.

    图 6  MATLAB (a), (c), (e)和CST (b), (d), (f)对不同偏转角的辐射验证 (a), (b) 35°; (c), (d) 45°; (e), (f) 55°. 图中标注出了实际偏转角度

    Fig. 6.  Verification with different deflection angles by MATLAB (a), (c), (e) and CST (b), (d), (f): (a), (b) 35°; (c), (d) 45°; (e), (f) 55°. The actual deflection angle is marked in the figures.

    表 1  单元A结构尺寸参数

    Table 1.  Geometric parameters of unit A.

    参数Plhgwt
    尺寸/μm30016536654545
    下载: 导出CSV

    表 2  单元B结构尺寸参数

    Table 2.  Geometric parameters of unit B.

    参数Pl1l2w1w2bhdg
    尺寸/μm3001151352538270402010
    下载: 导出CSV
  • [1]

    刘盛纲, 钟任斌 2009 电子科技大学报 38 481Google Scholar

    Liu S G, Zhong R B 2009 J. Univ. Electron. Sci. Technol. China 38 481Google Scholar

    [2]

    梁培龙, 戴景民 2015 自动化技术与应用 34 1

    Liang P L, Dai J M 2015 Tech. Autom. Appl. 34 1 (in Chinese)

    [3]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [4]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. App. 3 e218Google Scholar

    [5]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [6]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

    [7]

    Gao Y J, Xiong X, Wang Z, Chen F, Wang M 2020 Phys. Rev. X 10 031035Google Scholar

    [8]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F 2015 Light Sci. Appl. 4 e324Google Scholar

    [9]

    Xiao B, Zhang Y, Tong S, Yu J, Xiao L 2020 Opt. Express 28 7125Google Scholar

    [10]

    Vasic B, Isi G, Beccherelli R, Zografopoulos D C 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar

    [11]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Zheludev N I 2016 Nat. Photonics 10 60Google Scholar

    [12]

    沈仕远, 王元圣, 池瑶佳, 马新迎, 杨青慧, 陈智, 文岐业 2021 太赫兹科学与电子信息学报 19 6Google Scholar

    Shen S Y, Wang Y S, Chi Y J, Ma X Y, Yang Q H, Chen Z, Wen Q Y 2021 J. Terahertz Sci. Electron. Inform. Technol. 19 6Google Scholar

    [13]

    Yan D X, Meng M, Li J S, Li J N, Li X J 2020 Opt. Express 28 29843Google Scholar

    [14]

    Liu K, Lee S, Yang S, Delaire O, Wu J Q 2018 Mater. Today 21 875Google Scholar

    [15]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [16]

    Li J, Li J T, Zhang Y T, Li J N, Yang Y, Zhao H L, Zheng C L, Li J H, Huang J, Li F Y, Tang T T, Yao J Q 2020 Opt. Commun. 460 124986Google Scholar

    [17]

    Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory Simul. 3 1900183Google Scholar

    [18]

    Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar

    [19]

    Pan W M, Li J S, Zhou C 2021 Opt. Mater. Express 11 1070Google Scholar

    [20]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [21]

    Shabanpour J, Beyraghi S, Cheldavi A 2020 Sci. Rep. 10 8950Google Scholar

    [22]

    Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lv B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar

    [23]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B 33 980Google Scholar

    [24]

    Tak J, Kantemur A, Sharma Y, Xin H 2018 IEEE Antennas Wirel. Propag. Lett. 17 2008Google Scholar

    [25]

    Silva C R, Martins S R 2013 Opt. Technol. Lett. 55 1864Google Scholar

    [26]

    So S, Badloe T, Noh J, Bravo-Abad J, Rho J 2019 Nanophotonics 9 1041Google Scholar

    [27]

    Prado D R, Lopez-Fernandez J A, Arrebola M, Goussetis G 2018 48th European Microwave Conference (EuMC) Madrid Septemper 23, 2018 1545

    [28]

    Hou J J, Lin H, Xu W L, Tian Y Z, Wang Y, Shi X T, Deng F, Chen L J 2020 IEEE Access 8 211849Google Scholar

    [29]

    Ma W, Cheng F, Liu Y M 2018 ACS Nano 12 6326Google Scholar

    [30]

    Fan F, Gu W H, Chen S, Wang X H, Chang S J 2013 Opt. Lett. 38 1582Google Scholar

    [31]

    Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar

    [32]

    Shen X M 2003 The 13th Annual Conference of Electronic Countermeasures Branch of Chinese Society of Electronics Guilin October 1, 2003 p506 (in Chinese) [沈喜明 2003 中国电子学会电子对抗分会第十三届学术年会论文集. 桂林 第506页]

    [33]

    曾泓鑫 2020 博士学位论文 (成都: 电子科技大学)

    Zeng H X 2020 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [34]

    Ghorbani F, Beyraghi S, Shabanpour J, Oraizi H, Soleimani H, Soleimani M 2021 Sci. Rep. 11 7102Google Scholar

    [35]

    Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light Sci. Appl. 7 1Google Scholar

    [36]

    Sharma Y, Zhang H H, Xin H 2020 IEEE Trans. Antennas Propag. 68 5658Google Scholar

  • [1] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [4] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [5] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [6] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [9] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [13] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [14] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [17] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [20] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
计量
  • 文章访问数:  2997
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-24
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回