搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖

苏杰 刘子超 廖健颖 李盈傧 黄诚

引用本文:
Citation:

反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖

苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚

Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng
PDF
HTML
导出引用
  • 本文利用三维经典系综模型研究了反向旋转双色椭偏(two-color elliptically polarized, TCEP)场中Ar原子非次序双电离(nonsequential double ionization, NSDI)的电子关联特性和再碰撞动力学. 数值结果显示随激光强度的增大, 电子对在x方向的关联动量分布从位于第一象限的V形结构逐渐演变成主要分布于二、四象限的弧形结构, 最后过渡到主要位于第一象限的近原点分布. 其主要的关联行为从正相关演变成反相关再到正相关. 两脉冲组成的复合电场波形呈现出三叶草的形状, 即1个周期的电场由3个不同方向的“叶片”组成, 每个“叶片”称为一个波瓣, 根据时间演化的顺序分别将其称为波瓣1、波瓣2和波瓣3. 轨道分析发现, NSDI事件中单电离主要发生在波瓣1和波瓣3, 且随强度的增大波瓣1的贡献越来越大, 波瓣3的贡献越来越小. 相应地电子主要从20°和175°两个方向返回母离子, 且随强度的增大, 20°附近返回的电子逐渐增多, 175°附近返回的电子逐渐减少.
    Electron correlation behaviors and recollision dynamics in nonsequential double ionization (NSDI) of Ar atoms in a counter-rotating two-color elliptically polarized (TCEP) field are investigated by using a three-dimensional classical ensemble model. The numerical results show that the correlated momentum distribution of electron pairs in the x-axis direction evolves from a V-shaped structure in the first quadrant at the low intensity, to an arc-shaped structure mainly located in the second and fourth quadrants at moderate intensity, finally to a distribution near the origin located in the first quadrant in the high intensity. With the laser intensity increasing, the dominant correlation behavior evolves from correlation to anti-correlation and finally reverts back to correlation. The combined electric field traces out a trefoil pattern, i.e. the waveform in a period shows three leaves in different directions. Each leaf is called a lobe. The electric field recursively evolves from lobe 1 to lobe 2 and to lobe 3. Unlike the counter-rotating two-color circularly polarized fields, the combined fields from two elliptical fields do not have the spatial symmetry. Amplitudes of the three field lobes and the angles between them are different. Furthermore, the back analysis of NSDI trajectories shows that the single ionization in NSDI events mainly occurs in lobe 1 and lobe 3, and the contribution from lobe 1 increases and that from lobe 3 decreases with the increase of the intensity. Correspondingly, the free electrons mainly return to the parent ion from 20° and 175°. With the laser intensity increasing, the electrons returning from 20° gradually increase and those returning from 175° gradually decrease. In order to further understand the correlation behaviors of electron pairs in the x-axis direction, the NSDI events triggered off by single ionization from different lobes are separately discussed. With the increase of laser intensity the correlation behavior of NSDI events triggered off by single ionization from field lobe 1 evolves from anti-correlation behavior to correlation behavior, but the correlation behavior of NSDI events induced by single ionization from field lobe 3 evolves from correlation behavior to anti-correlation behavior. With the laser intensity increasing, the NSDI events induced by single ionization from field lobe 1 increase gradually, but those from field lobe 3 decrease. This results in that the total dominant correlation behavior evolves from correlation to anti-correlation and finally reverts back to correlation as the laser intensity increases.
      通信作者: 李盈傧, liyingbin2008@163.com ; 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504302, 12074329, 12004323, 12104389) 、西南大学大学生创新创业训练计划项目(批准号: X202210635104)和信阳师范学院“南湖学者奖励计划”青年项目资助的课题.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 12074329, 12004323, 12104389), Southwest University Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. X202210635104), and Nanhu Scholars Program for Young Scholars of Xinyang Normal University.
    [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett 69 2642Google Scholar

    [2]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett 87 043003Google Scholar

    [4]

    Chen Y B, Zhou Y M, Li Y, Li M, Lan P F, Lu P X 2018 Phys. Rev. A 97 013428Google Scholar

    [5]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett 112 013003Google Scholar

    [6]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416Google Scholar

    [7]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [8]

    Ye D F, Li M, Fu L, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett 115 123001Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys 84 1011Google Scholar

    [13]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett 104 253201Google Scholar

    [18]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [19]

    Li Y, Yu B H, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J 2016 Opt. Express 24 6469Google Scholar

    [20]

    Zhou Y M, Huang C, Tong A, Liao Q, Lu P X 2011 Opt. Express 19 2301Google Scholar

    [21]

    Li M, Jiang W C, Xie H, Luo S Q, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [22]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett 116 143005Google Scholar

    [23]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett 117 133201Google Scholar

    [24]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett 117 133202Google Scholar

    [25]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P X, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [26]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [27]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [28]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [29]

    Huang C, Pang H L, Huang X F, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [30]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys 73 075501Google Scholar

    [31]

    Ma X, Zhou Y M, Chen Y, Li M, Li Y, Zhang Q, Lu P X 2019 Opt. Express 27 1825Google Scholar

    [32]

    Chen Z, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Peng M, Bai L H 2020 Chin. Opt. Lett 18 110201Google Scholar

    [34]

    Busuladžić M, Čerkić A, Gazibegović-Busuladžić A, Hasović E, Milošević D B 2018 Phys. Rev. A 98 013413Google Scholar

    [35]

    黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 093202Google Scholar

    Huang X F, Su J, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 093202Google Scholar

    [36]

    Xu T T, Chen J H, Pan X, Zhang H, Ben S, Liu X 2018 Chin. Phys. B 27 093201Google Scholar

    [37]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q, Liu X 2020 Chin. Phys. B 29 013203Google Scholar

    [38]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [39]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [40]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [41]

    Su J, Liu Z, Liao J, Huang X, Li Y, Huang C 2022 Opt. Express 30 24898Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep 6 37413Google Scholar

    [43]

    Li Y, Xu J, Chen H, Li Y, He J, Qin L, Shi L, Zhao Y, Tang Q, Zhai C, Yu B 2021 Opt. Commun 493 127019Google Scholar

    [44]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

  • 图 1  反向旋转TCEP复合激光电场 E(t) (虚线) 和相应的负矢势 –A(t) (实线) , 箭头表示时间演化方向, 激光强度为 2 × 1013 W/cm2

    Fig. 1.  Combined laser electric field E(t) (dashed curve) and corresponding negative vector potential –A (t) (solid curve) at an intensity of 2 × 1013 W/cm2, arrows indicate the direction of time evolution.

    图 2  反向旋转 TCEP场中Ar原子双电离概率的强度依赖

    Fig. 2.  Double ionization probability of Ar atoms in the counter-rotating TCEP laser field as a function of laser intensity.

    图 3  不同强度下 x 方向上的相关电子动量谱 (a) 2 × 1013 W/cm2; (b) 4 × 1013 W/cm2 ; (c) 6 × 1013 W/cm2; (d) 8 × 1013 W/cm2

    Fig. 3.  Correlated electron momentum distributions in the x direction for different intensities: (a) 2 × 1013 W/cm2; (b) 4 × 1013 W/cm2; (c) 6 × 1013 W/cm2; (d) 8 × 1013 W/cm2

    图 4  单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布. 为了更清楚显示碰撞和电离时刻的激光相位, 将碰撞时间和电离时间转换到一个激光周期, 其中彩色虚线给出了复合电场幅值的时间演化. 激光强度分别 2 × 1013 W/cm2 (第1行)、4 × 1013 W/cm2 (第2行) 、 6 × 1013 W/cm2 (第3行) 和8 × 1013 W/cm2 (第4行)

    Fig. 4.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for the intenstiies of 2 × 1013 W/cm2 (the first row), 4 × 1013 W/cm2 (the second row), 6 × 1013 W/cm2 (the third row) and 8 × 1013 W/cm2 (the fourth row). To more clearly show the laser phases of the recollision and ionization instants, the recollision and ionization times are transfered to one laser cycle. The dashed curve shows the combined electric field.

    图 5  波瓣1 (第1行)和波瓣3 (第2行)处单电离诱导的NSDI事件在x方向的相关电子动量谱

    Fig. 5.  Correlated electron momentum distributions in x direction for NSDI events induced by single ionizations at field lobe 1 (the first row) and field lobe 3 (the second row) for four different intensities.

    图 6  波瓣1处单电离诱导的NSDI事件的单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布, 其他参数与图4相同

    Fig. 6.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for those NSDI events induced by single ionization at field lobe 1. Other parameters are the same as Fig. 4.

    图 7  波瓣3处单电离诱导的NSDI事件的单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布, 其他参数与图4相同

    Fig. 7.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for those NSDI events induced by single ionization at field lobe 3, other parameters are the same as Fig. 4.

    图 8  不同强度下电离电子返回方向的统计分布

    Fig. 8.  Statistical distribution of return directions of ionized electrons for four intensities.

  • [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett 69 2642Google Scholar

    [2]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett 87 043003Google Scholar

    [4]

    Chen Y B, Zhou Y M, Li Y, Li M, Lan P F, Lu P X 2018 Phys. Rev. A 97 013428Google Scholar

    [5]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett 112 013003Google Scholar

    [6]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416Google Scholar

    [7]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [8]

    Ye D F, Li M, Fu L, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett 115 123001Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys 84 1011Google Scholar

    [13]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett 104 253201Google Scholar

    [18]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [19]

    Li Y, Yu B H, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J 2016 Opt. Express 24 6469Google Scholar

    [20]

    Zhou Y M, Huang C, Tong A, Liao Q, Lu P X 2011 Opt. Express 19 2301Google Scholar

    [21]

    Li M, Jiang W C, Xie H, Luo S Q, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [22]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett 116 143005Google Scholar

    [23]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett 117 133201Google Scholar

    [24]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett 117 133202Google Scholar

    [25]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P X, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [26]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [27]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [28]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [29]

    Huang C, Pang H L, Huang X F, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [30]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys 73 075501Google Scholar

    [31]

    Ma X, Zhou Y M, Chen Y, Li M, Li Y, Zhang Q, Lu P X 2019 Opt. Express 27 1825Google Scholar

    [32]

    Chen Z, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Peng M, Bai L H 2020 Chin. Opt. Lett 18 110201Google Scholar

    [34]

    Busuladžić M, Čerkić A, Gazibegović-Busuladžić A, Hasović E, Milošević D B 2018 Phys. Rev. A 98 013413Google Scholar

    [35]

    黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 093202Google Scholar

    Huang X F, Su J, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 093202Google Scholar

    [36]

    Xu T T, Chen J H, Pan X, Zhang H, Ben S, Liu X 2018 Chin. Phys. B 27 093201Google Scholar

    [37]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q, Liu X 2020 Chin. Phys. B 29 013203Google Scholar

    [38]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [39]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [40]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [41]

    Su J, Liu Z, Liao J, Huang X, Li Y, Huang C 2022 Opt. Express 30 24898Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep 6 37413Google Scholar

    [43]

    Li Y, Xu J, Chen H, Li Y, He J, Qin L, Shi L, Zhao Y, Tang Q, Zhai C, Yu B 2021 Opt. Commun 493 127019Google Scholar

    [44]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] 廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚. 椭偏激光场中原子次序双电离的离子动量分布. 物理学报, 2023, 72(19): 193202. doi: 10.7498/aps.72.20230683
    [4] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [5] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [6] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [7] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [8] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [9] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [10] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [11] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [12] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [13] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [14] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [15] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [16] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [17] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [18] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [19] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [20] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
计量
  • 文章访问数:  3723
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-07-13
  • 上网日期:  2022-09-21
  • 刊出日期:  2022-10-05

/

返回文章
返回